首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
1,1′‐Bis(trimethylsilylamino)ferrocene reacts with trimethyl‐ and triethylgallium to give the μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetraalkyldigallanes. These were converted into the 1,3‐bis(trimethylsilyl)‐2‐alkyl‐2‐pyridine‐1,3,2‐diazagalla‐[3]ferrocenophanes, of which the ethyl derivative was characterized by X‐ray structural analysis. Treatment of gallium trichloride with N,N′‐dilithio‐1,1′‐bis(trimethylsilylamino)ferrocene affords μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetrachlorodigallane along with bis(trimethylsilyl)‐2,2‐dichloro‐1‐aza‐3‐azonia‐2‐gallata‐[3]ferrocenophane as a side product, and both were structurally characterized by X‐ray analysis. The solution‐state structures of the new gallium compounds and aspects of their molecular dynamics in solution were studied by NMR spectroscopy (1H, 13C, 29Si NMR).  相似文献   

2.
A new diamine containing spirobisindane and phenazine units, namely, 3,3,3′,3′‐tetramethyl‐2,2′,3,3′‐tetrahydro‐1,1′‐spirobi[cyclopenta[b]phenazine]‐7,7′‐diamine (TTSBIDA) was synthesized starting from commercially available 5,5′,6,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethyl‐1,1′‐spirobisindane (TTSBI). TTSBI was oxidized to 3,3,3′,3′‐tetramethyl‐2,2′,3,3′‐tetrahydro‐1,1′‐spirobi[indene]‐5,5′,6,6′‐tetraone (TTSBIQ) which was subsequently condensed with 4‐nitro‐1,2‐phenylenediamine to obtain 3,3,3′,3′‐tetramethyl‐7,7′‐dinitro‐2,2′,3,3′‐tetrahydro‐1,1′‐spirobi[cyclopenta[b]phenazine] (TTSBIDN). TTSBIDN was converted into TTSBIDA by reduction of the nitro groups using hydrazine hydrate in the presence of Pd/C as the catalyst. A series of new polyimides of intrinsic microporosity (PIM‐PIs) were synthesized by polycondensation of TTSBIDA with commercially available aromatic dianhydrides. PIM‐PIs exhibited amorphous nature, high thermal stability (T10 > 480 °C) and intrinsic microporosity (BET surface area = 59–289 m2/g). The gas permeation characteristics of films of selected PIM‐PIs were evaluated and they exhibited appreciable gas permeability as well as high selectivity. The CO2 and O2 permeability of PIM‐PIs were in the range 185.4–39.2 and 30.6–6.2 Barrer, respectively. Notably, polyimide derived from TTSBIDA and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (PIM‐PI‐6FDA) exhibited high CO2 and O2 permeability of 185.4 and 30.6 Barrer with CO2/CH4 and O2/N2 selectivity of 43.1 and 5.1, respectively. The data of PIM‐PI‐6FDA for CO2/CH4 and O2/N2 gas pairs were located near Robeson upper bound. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 766–775  相似文献   

3.
The acid‐catalyzed reaction between formaldehyde and 1H‐indene, 3‐alkyl‐ and 3‐aryl‐1H‐indenes, and six‐membered‐ring substituted 1H‐indenes, with the 1H‐indene/CH2O ratio of 2 : 1, at temperatures above 60° in hydrocarbon solvents, yields 2,2′‐methylenebis[1H‐indenes] 1 – 8 in 50–100% yield. These 2,2′‐methylenebis[1H‐indenes] are easily deprotonated by 2 equiv. of BuLi or MeLi to yield the corresponding dilithium salts, which are efficiently converted into ansa‐metallocenes of Zr and Hf. The unsubstituted dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[1H‐inden‐1‐yl]}zirconium ([ZrCl2( 1′ )]) is the least soluble in organic solvents. Substitution of the 1H‐indenyl moieties by hydrocarbyl substituents increases the hydrocarbon solubility of the complexes, and the presence of a substituent larger than a Me group at the 1,1′ positions of the ligand imparts a high diastereoselectivity to the metallation step, since only the racemic isomers are obtained. Methylene‐bridged ‘ansa‐zirconocenes’ show a noticeable open arrangement of the bis[1H‐inden‐1‐yl] moiety, as measured by the angle between the planes defined by the two π‐ligands (the ‘bite angle’). In particular, of the ‘zirconocenes’ structurally characterized so far, the dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[4,7‐dimethyl‐1H‐inden‐1‐yl]}zirconium ([ZrCl2( 5′ )] is the most open. The mixture [ZrCl2( 1′ )]/methylalumoxane (MAO) is inactive in the polymerization of both ethylene and propylene, while the metallocenes with substituted indenyl ligands polymerize propylene to atactic polypropylene of a molecular mass that depends on the size of the alkyl or aryl groups at the 1,1′ positions of the ligand. Ethene is polymerized by rac‐dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[1‐methyl‐1H‐inden‐1‐yl]}zirconium ([ZrCl2( 2′ )])/MAO to polyethylene waxes (average degree of polymerization ca. 100), which are terminated almost exclusively by ethenyl end groups. Polyethylene with a high molecular mass could be obtained by increasing the size of the 1‐alkyl substituent.  相似文献   

4.
An efficient synthesis of (3S)‐1,1′,2,2′,3′,4′,6′,7′‐octahydro‐9′‐nitro‐2,6′‐dioxospiro[3H‐indole‐3,8′‐[8H]pyrido[1,2‐a]pyrimidine]‐7′‐carbonitrile is achieved via a three‐component reaction of isatin, ethyl cyanoacetate, and 1,2,3,4,5,6‐hexahydro‐2‐(nitromethylidene)pyrimidine. The present method does not involve any hazardous organic solvents or catalysts. Also the synthesis of ethyl 6′‐amino‐1,1′,2,2′,3′,4′‐hexahydro‐9′‐nitro‐2‐oxospiro[3H‐indole‐3,8′‐[8H]pyrido[1,2‐a]pyrimidine]‐7′‐carboxylates in high yields, at reflux, using a catalytic amount of piperidine, is described. The structures were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

5.
Photochromic 6‐bromomethyl‐6′‐methyl‐[2,2′‐bi‐1H‐indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 2 ), 6,6′‐ bis(bromomethyl)‐[2,2′‐bi‐1H‐indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 3 ) and 6,6′‐bis(dibromomethyl)‐[2,2′‐ bi‐1H‐indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 4 ) have been synthesized from 6,6′‐dimethyl‐[2,2′‐bi‐1H‐ indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 1 ). The single crystal of 4 was obtained and its crystal structure was analyzed. The results indicate that in crystal 4 , molecular arrangement is defective tightness compared with its precursor 1 . Besides, UV‐Vis absorption spectra in CH2Cl2 solution, photochromic and photomagnetic properties in solid state of 2 , 3 and 4 were also investigated. The results demonstrate that when the hydrogen atoms in the methyl group on the benzene rings of biindenylidenedione were substituted by bromines, its properties could be affected considerably.  相似文献   

6.
1,1′‐Divinyl ferrocene ( 2 ) reacts with K3[Fe(CN)6] under basic biphasic conditions to give a [4]ferrocenophane ( 4 ) in good yield. Incorporating deuterium labels into the internal positions of the vinyl groups of 2 affects the chemoselectivity of the reaction; thus under identical reaction conditions, [D2]‐ 2 reacts to provide a diol‐functionalised [4]ferrocenophane, [D2]‐D /L ‐ 6 in addition to the expected keto‐alcohol, [D1]‐ 4 . Variants on this one‐electron oxidative cyclisation methodology can be used to give other [4]ferrocenophanes; thus, the reaction of 2 with CuCl2 in MeOH or iPrOH leads to dialkoxy [4]ferrocenophanes 19 and 20 , respectively, whereas the reaction of 2 with benzyl carbamate in the presence of tBuOCl gives a bis(carbamate)[4]ferrocenophane, 21 . Mechanisms to account for the formation of the products, the stereoselectivity, and the unusual isotope‐dependent chemoselectivity in the reaction of 2 and [D2]‐ 2 with K3[Fe(CN)6] are proposed.  相似文献   

7.
This paper describes the development of novel aromatic platforms for supramolecular construction. By the Suzuki cross‐coupling protocol, a variety of functionalized m‐terphenyl derivatives were prepared (Schemes 1–4). Macrolactamization of bis(ammonium salt) (S,S)‐ 6 with bis(acyl halide) 7 afforded the macrocyclic receptor (S,S)‐ 2 (Scheme 1), which was shown by 1H‐NMR titration studies to form ‘nesting' complexes of moderate stability (Ka between 130 and 290 M ?1, 300 K) with octyl glucosides 13 – 15 (Fig. 2) in the noncompetitive solvent CDCl3. Suzuki cross‐coupling starting from 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl provided access to a novel series of extended aromatic platforms (Scheme 5) for cleft‐type (Fig. 1) and macrotricyclic receptors such as (S,S,S,S)‐ 1 . Although mass‐spectral evidence for the formation of (S,S,S,S)‐ 1 by macrolactamization between the two functionalized 3,3′,5,5′‐tetraaryl‐1,1′‐biphenyl derivatives (S,S)‐ 33 and 36 was obtained, the 1H‐ and 13C‐NMR spectra of purified material remained rather inconclusive with respect to both purity and constitution. The versatile access to the novel, differentially functionalized 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl platforms should ensure their wide use in future supramolecular construction.  相似文献   

8.
The conformation of [bis‐(N,N′‐difluoroboryl)]‐3,3′‐diethyl‐4,4′,8,8′,9,9′,10,10′‐octamethyl‐2,2′‐bidipyrrin (1) in solution was studied by analyzing the 13C? 19F and 19F? 19F through‐space spin–spin couplings. The 1H and 13C NMR spectra were assigned on the basis of nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single‐quantum correlation (HSQC), and heteronuclear multiple‐bond correlation (HMBC) experiments. The 19F spectrum of 1 was compared with that of 2‐ethyl‐1,3,5,6,7‐pentamethyl‐4,4‐difluoro‐4‐bor‐3a,4a‐diaza‐s‐indacen (2). The 19F? 19F through‐space spin? spin coupling in 1 was thus assigned and the coupling constant was obtained by simulating the coupling patterns. The obtained conformation of 1 was compared with those of the known complexes [bis‐(N,N′‐difluoroboryl)]‐3,3′,8,8′,9,9′‐hexaethyl‐4,4′,10,10′‐tetramethyl‐6,6′‐(4‐methylphenyl)‐2,2′‐bidipyrrin (3)and [bis‐(N,N′‐difluoroboryl)]‐9,9′‐diethyl‐4,4′,8,8′,10,10′‐hexamethyl‐3,3′‐bis(methoxycarbonylethyl)‐2,2′‐bidipyrrin (4). The conformational dynamics of 1, 3, and 4 was surveyed by observing the temperature dependence of the through‐space coupling constants between 253 and 333 K. The 13C? 19F and 19F? 19F through‐space spin–spin couplings thus confirm similar conformations of different BisBODIPYs in solution in contrast to earlier findings in the solid state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The challenging molecular architecture of spirooxindoles is appealing to chemists because it evokes novel synthetic strategies that address configurational demands and provides platforms for further reaction development. The [3+2] cycloaddition of the carbonyl ylide with arylideneoxindole via a five‐membered cyclic transition state gave a novel class of dispirooxindole derivatives, namely tert‐butyl 4′‐(4‐bromophenyl)‐1′′‐methyl‐2,2′′‐dioxo‐5′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐1‐carboxylate, C36H31BrN2O, (Ia), 5′‐(4‐bromophenyl)‐1,1′′‐dimethyl‐4′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C32H25BrN2O3, (Ib), and tert‐butyl 1′′‐methyl‐2,2′′‐dioxo‐4′‐phenyl‐5′‐(p‐tolyl)‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐1‐carboxylate, C37H34N2O5, (Ic). Crystal structure analyses of these dispirooxindoles revealed the formation of two diastereoisomers selectively and confirmed their relative stereochemistry (SSSR and RRRS). In all three structures, intramolecular C—H...O and π–π interactions between oxindole and dihydrofuran rings are the key factors governing the regio‐ and stereoselectivity, and in the absence of conventional hydrogen bonds, their crystal packings are strengthened by intermolecular C—H...π interactions.  相似文献   

10.
A novel positive‐working, photosensitive polyimide, poly[1,4‐phenyleneoxy‐1,4‐phenylene‐2,2′‐di(2‐nitrobenzyloxy)benzophenone‐3,3′,4,4′‐tetracarboxdiimide] (OPI‐Nb), developable with an aqueous base was prepared by the o‐nitrobenzylation of a polyimide, poly(1,4‐phenyleneoxy‐1,4‐phenylene‐2,2′‐dihydroxybenzophenone‐3,3′,4,4′‐tetracarboxdiimide) (OPI), derived from 2,2′‐dihydroxy‐3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (DHBA) and 4,4′‐oxydianiline, and it micropatterning properties were investigated. The o‐nitrobenzylation of OPI to OPI‐Nb was conducted with o‐nitrobenzyl bromide in N‐methyl‐2‐pyrrolidinone containing Et3N. The DHBA monomer was synthesized by exhaustive KMnO4 oxidation of bis(2‐dimethoxy‐3,4‐dimethylphenyl)methane obtained by etherification of bis(2‐hydroxy‐3,4‐dimethylphenyl)methane with iodomethane, followed by deprotection of the methoxy groups and cyclodehydration of the obtained 2,2′‐dihydroxy‐3,3′4,4′‐benzophenonetetracarboxylic acid. The intermediate bis(2‐hydroxy‐3,4‐dimethylphenyl)methane was prepared by the condensation of 2,3‐dimethylphenol with paraformaldehyde. The degree of o‐nitrobenzylation was determined to be over 94 mol % from 1H NMR absorption of benzylic CH2 protons. The aromatic OPI was perfectly soluble in a dilute aqueous NaOH solution and tetramethylammonium hydroxide (TMAH), whereas OPI‐Nb was not even swellable in them. In the micropatterning process, OPI‐Nb showed a line‐width resolution of 0.4‐μm and a sensitivity of 5.4 J/cm2 when its thin films were irradiated with 365‐nm light and developed with a 2.38% aqueous TMAH solution at room temperature for 90 s. The thickness loss of OPI‐Nb films measured after postbaking at 350 °C was in the 8–9% range. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 776–788, 2007  相似文献   

11.
Two kinds of chiral 1,1′‐binaphthol (BINOL)‐based polymer enantiomers were designed and synthesized by the polymerization of 5,5′‐((2,2′‐bis (octyloxy)‐[1,1′‐binaphthalene]‐3,3′‐diyl)bis(ethyne‐2,1‐diyl))bis(2‐hydroxybenzaldehyde) ( M1 ) with alkyl diamine ( M2 ) via nucleophilic addition–elimination reaction. The resulting chiral polymers can exhibit mirror image cotton effects either in the absence or in the presence of Zn2+ ion. Almost no fluorescence or circularly polarized luminescence (CPL) emission could be observed for two chiral BINOL‐based polymer enantiomers in the absence of Zn2+. Interestingly, the chiral polymers can show strong fluorescence and CPL response signals upon the addition of Zn2+, which can be attributed to Zn2+‐coordination fluorescence enhancement effect. This work can develop a new strategy on the design of the novel CPL materials via metal‐coordination reaction. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1282–1288  相似文献   

12.
3,3′,4,4′‐Tetramethyl‐5,5′‐dioxo‐2,2′‐bifuran‐2,2′(5H,5′H) diyl diacetate was obtained from the reaction between 2,3‐dimethyl maleic anhydride and acetic anhydride in the presence of zinc in toluene. This easy synthetic route gave bis butenolide in excellent yield.  相似文献   

13.
Crystal Structures and Spectroscopic Properties of 2λ3‐Phospha‐1, 3‐dionates and 1, 3‐Dionates of Calcium ‐ Comparative Studies on the 1, 3‐Diphenyl and 1, 3‐Di(tert‐butyl) Derivatives A hydrogen‐metal exchange between dibenzoylphosphane and calcium carbide in tetrahydrofuran (THF) followed by addition of the ligand 1, 3, 5‐trimethyl‐1, 3, 5‐triazinane (TMTA) furnishes the binuclear complex bis[(tmta‐N, N′, N″)calcium bis(dibenzoylphosphanide)] ( 1a ) co‐crystallizing with benzene. Similarly, reaction of bis(2, 2‐dimethylpropionyl)phosphane with bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in 1, 2‐dimethoxyethane (DME) gives bis(dme‐O, O′)calcium bis[bis(2, 2‐dimethylpropionyl)phosphanide] ( 1b ) in high yield. The carbon analogues 1, 3‐diphenylpropane‐1, 3‐dione (dibenzoylmethane) or 2, 2, 6, 6‐tetramethylheptane‐3, 5‐dione (dipivaloylmethane) and bis(thf‐O)calcium bis[tris(trimethylsilylmethyl)zincate] in DME afford bis(dme‐O, O′)calcium bis(dibenzoylmethanide) ( 2a ) and the binuclear complex (μ‐dme‐O, O′)bis[(dme‐O, O′)calcium bis(dipivaloylmethanide)] ( 2b ), respectively. Dialkylzinc formed during the metalation reaction shows no reactivity towards the 1, 3‐dionates 2a and 2b . Finally, from the reaction of the unsymmetrically substituted ligand 2‐(methoxycarbonyl)cyclopentanone and bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in toluene, the trinuclear complex 3 is obtained, co‐crystallizing with THF. The β‐ketoester anion bridges solely via the cyclopentanone unit.  相似文献   

14.
1,1‐Bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane (BAPPE) was prepared through nucleophilic substitution reaction of 1,1‐bis(4‐hydroxyphenyl)‐1‐phenylethane and p‐chloronitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Novel organosoluble polyimides and copolyimides were synthesized from BAPPE and six kinds of commercial dianhydrides, including pyromellitic dianhydride (PMDA, Ia ), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA, Ib ), 3,3′,4,4′‐ biphenyltetracarboxylic dianhydride (BPDA, Ic ), 4,4′‐oxydiphthalic anhydride (ODPA, Id ), 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA, Ie ) and 4,4′‐hexafluoroisopropylidenediphthalic anhydride (6FDA, If ). Differing with the conventional polyimide process by thermal cyclodehydration of poly(amic acid), when polyimides were prepared by chemical cyclodehydration with N‐methyl‐2‐pyrrolidone as used solvent, resulted polymers showed good solubility. Additional, Ia,b were mixed respectively with the rest of dianhydrides (Ic–f) and BAPPE at certain molar ratios to prepare copolyimides with arbitrary solubilities. These polyimides and copolyimides were characterized by good mechanical properties together with good thermal stability. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2082–2090, 2000  相似文献   

15.
Two spiro[indoline‐3,3′‐pyrrolizine] derivatives have been synthesized in good yield with high regio‐ and stereospecificity using one‐pot reactions between readily available starting materials, namely l ‐proline, substituted 1H‐indole‐2,3‐diones and electron‐deficient alkenes. The products have been fully characterized by elemental analysis, IR and NMR spectroscopy, mass spectrometry and crystal structure analysis. In (1′RS ,2′RS ,3SR ,7a′SR )‐2′‐benzoyl‐1‐hexyl‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine]‐1′‐carboxylic acid, C28H32N2O4, (I), the unsubstituted pyrrole ring and the reduced spiro‐fused pyrrole ring adopt half‐chair and envelope conformations, respectively, while in (1′RS ,2′RS ,3SR ,7a′SR )‐1′,2′‐bis(4‐chlorobenzoyl)‐5,7‐dichloro‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine], which crystallizes as a partial dichloromethane solvate, C28H20Cl4N2O3·0.981CH2Cl2, (II), where the solvent component is disordered over three sets of atomic sites, these two rings adopt envelope and half‐chair conformations, respectively. Molecules of (I) are linked by an O—H…·O hydrogen bond to form cyclic R 66(48) hexamers of (S 6) symmetry, which are further linked by two C—H…O hydrogen bonds to form a three‐dimensional framework structure. In compound (II), inversion‐related pairs of N—H…O hydrogen bonds link the spiro[indoline‐3,3′‐pyrrolizine] molecules into simple R 22(8) dimers.  相似文献   

16.
In the reaction of thiazole‐2,4‐diamines 8 with isothiocyanates 1 , 2,4‐diaminothiazole‐5‐carbothioamides 9, 10, 18 , and 19 as well as thiazolo[4,5‐d]pyrimidine‐7(6H)‐thiones 21 were formed. The carbothioamides 9, 10 , and 18 were transformed by reaction with different types of monofunctional and bifunctional electrophiles into hitherto unknown acceptor‐substituted 4,4′‐([2,5′‐bithiazole]‐2′,4′‐diyl)bis[morpholines] 24 and 29 , the 2′,4′‐bis(dialkylamino)[2,5′‐bithiazol]‐4‐(5H)‐ones 30 , and the 4‐substituted 2′,4′‐bis(dialkylamino)‐2,5′‐bithiazoles 31 . From 30 and 31 new 4‐mono‐ or 4,5‐disubstituted 2′,4′‐bis(dialkylamino)‐2,5′‐bithiazoles 34, 35, 38 , and 39 as well as 5‐substituted 2′,4′‐bis(dialkylamino)[2,5′‐bithiazol]‐4(5H)‐ones 33, 36 , and 37 were prepared.  相似文献   

17.
Variable-temperature 1H NMR studies have revealed that in 1,1′,3,3′-tetrakis(trimethylsilyl)ferrocene, Fe[η5-C5H3(SiMe3)2-1,3]2, as well as in 1,1′,3,3′-tetrakis(trimethylsilyl)titanocene dichloride, Ti[η5-C5H3(SiMe3)2-1,3]2Cl2, the rotation of the five-membered ring about the metal-ring vector is hindered at lower temperatures. The titanocene complex was prepared from TiCl3 and bis(trimethylsilyl)cyclopentadienyllithium via Ti[η5-C5H3(SiMe3)2-1,3]2Cl.  相似文献   

18.
Poly[bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) γ‐octamolybdate(VI) dihydrate], {(C10H16N4)2[Mo8O26]·2H2O}n, (I), and bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) α‐dodecamolybdo(VI)silicate tetrahydrate, (C10H16N4)2[SiMo12O40]·4H2O, (II), display intense hydrogen bonding between the cationic pyrazolium species and the metal oxide anions. In (I), the asymmetric unit contains half a centrosymmetric γ‐type [Mo8O26]4− anion, which produces a one‐dimensional polymeric chain by corner‐sharing, one cation and one water molecule. Three‐centre bonding with 3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium, denoted [H2Me4bpz]2+ [N...O = 2.770 (4)–3.146 (4) Å], generates two‐dimensional layers that are further linked by hydrogen bonds involving water molecules [O...O = 2.902 (4) and 3.010 (4) Å]. In (II), each of the four independent [H2Me4bpz]2+ cations lies across a twofold axis. They link layers of [SiMo12O40]4− anions into a three‐dimensional framework, and the preferred sites for pyrazolium/anion hydrogen bonding are the terminal oxide atoms [N...O = 2.866 (6)–2.999 (6) Å], while anion/aqua interactions occur preferentially viaμ2‐O sites [O...O = 2.910 (6)–3.151 (6) Å].  相似文献   

19.
A new synthetic route to 2,2′,3,3′‐BTDA (where BTDA is benzophenonetetracarboxylic dianhydride), an isomer of 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA, is described. Single‐crystal X‐ray diffraction analysis of 2,2′,3,3′‐BTDA has shown that this dianhydride has a bent and noncoplanar structure. The polymerizations of 2,2′,3,3′‐BTDA with 4,4′‐oxydianiline (ODA) and 4,4′‐bis(4‐aminophenoxy)benzene (TPEQ) have been investigated with a conventional two‐step process. A trend of cyclic oligomers forming in the reaction of 2,2′,3,3′‐BTDA and ODA has been found and characterized with IR, NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and elemental analyses. Films based on 2,2′,3,3′‐BTDA/TPEQ can only be obtained from corresponding polyimide (PI) solutions prepared by chemical imidization because those from their polyamic acids by thermal imidization are brittle. PIs from 2,2′,3,3′‐BTDA have lower inherent viscosities and worse thermal and mechanical properties than the corresponding 2,3′,3′,4′‐BTDA‐ and 3,3′,4,4′‐BTDA‐based PIs. PIs from 2,2′,3,3′‐BTDA and 2,3′,3′,4′‐BTDA are amorphous, whereas those from 3,3′,4,4′‐BTDA have some crystallinity, according to wide‐angle X‐ray diffraction. Furthermore, PIs from 2,2′,3,3′‐BTDA have better solubility, higher glass‐transition temperatures, and higher melt viscosity than those from 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA. Model compounds have been prepared to explain the order of the glass‐transition temperatures found in the isomeric PI series. The isomer effects on the PI properties are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2130–2144, 2004  相似文献   

20.
The reaction of 2,2′‐Bis(2N‐(1,1′,3,3′‐tetramethyl‐guanidino))diphenylene‐amine (TMG2PA) ( 1 ) with CuI in MeCN results in the formation of [CuII(TMG2PAamid)I] ( 2 ) indicatingthat CuI is the target of an oxidative attack of the N‐H proton of the ligand which itself is converted to molecular hydrogen. In contrast, if [Cu(MeCN)4][PF6] is used as the CuI source, [CuI2(TMGbenz)2][PF6]2 ( 3 ) is obtained instead. The use of the non‐coordinating counterion [PF6] apparently prevents CuI from oxidation but induces itself a cyclisation reaction within the ligand which results in the formation of a benzimidazole‐guanidine ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号