共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization. 相似文献
2.
Hans‐Christian Bttcher Marion Graf Kurt Merzweiler Christoph Wagner 《无机化学与普通化学杂志》2000,626(6):1335-1340
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses. 相似文献
3.
Hans‐Christian Bttcher Marion Graf Kurt Merzweiler Christoph Wagner 《无机化学与普通化学杂志》2001,627(12):2657-2662
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)2(μ3‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)2(μ3‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster. 相似文献
4.
Organo-Cobalt(II) Phosphorane Iminato Complexes with Heterocubane Structures. Crystal Structures of [CoBr(NPR3)]4 with R = Me, Et, [Co(C≡C–CMe3)(NPMe3)]4, and [Co(C≡C–SiMe3)(NPEt3)]4 The phosphorane iminato complexes [CoBr(NPR3)]4, which are accessible by reaction of CoBr2 with the silylated phosphorane imines Me3SiNPR3 (R = Me, Et) in the melt at 180 °C and in the presence of KF, can be transformed into the alkynyl complexes [Co(C≡C–CMe3) · (NPMe3)]4 and [Co(C≡C–SiMe3)(NPEt3)]4 on obtaining the heterocubane structures, when caused to react with the lithium organic reagents LiC≡C–CMe3 and LiC≡C–SiMe3 in THF at 0 °C. According to the crystal structure analyses all four of the compounds form heterocubane structures with only slightly distorted Co4N4 cubic structures. 相似文献
5.
Synthesis and Structure of Re4(μ3-Te)4(TeBr2)4Br8 Re4(μ3-Te)4(TeBr2)4Br8 is obtained from the elements at 550°C in an evacuated glass ampoule. The diamagnetic compound forms air-stable, metallic lustre black crystals crystallizing in the tetragonal space group I4 with a = 1120.2(2), c = 1393.5(3) pm, and Z = 2. The crystal structure is built up by isolated cluster molecules Re4(μ3-Te)4(TeBr2)4Br8 occupying the centres 4 at 1/2, 1/2, 0 and 0, 0, 1/2. The inner sceleton is formed by a Re4Te4 heterocubane unit with short Re? Re distances of 277 and 283 pm, which can be discussed as single bonds. Each Re atom coordinates in addition two Br? ligands and one TeBr2 molecule. For Re therefore results the oxidation state +IV. Reaction of Re4(μ3-Te)4(TeBr2)4Br8 with I2 yields (TeI4)4. 相似文献
6.
Hans‐Christian Bttcher Mauricio Fernandez Marion Graf Kurt Merzweiler Christoph Wagner 《无机化学与普通化学杂志》2002,628(11):2247-2248
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)4(μ‐PCy2)2(μ‐Ph2PCH2PPh2)(μ3‐S){μ3‐η2‐CSC(S)S}] [Ru3(CO)4(μ‐H)3(μ‐PCy2)3(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2) reacts with CS2 at room temperature and yields the open 50 valence electron cluster [Ru3(CO)4(μ‐PCy2)2(μ‐dppm)(μ3‐S){μ3‐η2‐CSC(S)S}] ( 3 ) containing the unusual μ3‐η2‐C2S3 mercaptocarbyne ligand. Compound 3 was characterized by single crystal X‐ray structure analysis. 相似文献
7.
Cluster Complexes [M2Rh(μ‐PCy2)(μ‐CO)2(CO)8] with Triangular Core of RhM2 (M = Re, Mn; M2 = MnRe): Synthesis, Structure, Ring Opening Reaction, and Properties as Catalysts for Hydroformylation and Isomerisation of 1‐Hexene The salts PPh4[M2(μ‐H)(μ‐PCy2)(CO)8] and Rh(COD)[ClO4] were in equimolar amounts reacted at –40 to –15 °C in the presence of CO(g) in CH2Cl2/methanol solution under release of PPh4[ClO4] to intermediates. Such species formed in a selective reaction the unifold unsaturated 46 valence electrons title compounds [M2Rh(μ‐PCy2)(μ‐CO)2(CO)8] (M = Re 1 , Mn 2 ; M2 = MnRe 3 ) in yields of > 90%; analogeous the derivatives with the PPh2 bridge could the obtained (M = Re 4 , Mn 5 ). From these clusters the molecular structure of 2 was determined by a single crystal X‐ray analysis. The exchange of the labil CO ligand attached at the rhodium ring atom in 1 – 3 against selected tertiary and secondary phosphanes in solution gave the substitution products [M2RhL(μ‐PCy2)(μ‐CO)2(CO)7] (M = Re: L = PMe3 6 , P(n‐Bu)3 7 , P(n‐C6H4SO3Na)3 8 , HPCy2 9 , HPPh2 10 , HPMen2 11 , M2 = MnRe: L = HPCy2 12 ) nearly quantitative. Such dimanganese rhodium intermediates ligated with secondary phosphanes were converted in a subsequent reaction to the ring‐opened complexes [MnRh(μ‐PCy2)(μ‐H)(CO)5Mn(μ‐PR2)(CO)4] (M = Mn: R = Cy 13 , Ph 14 , Mn 15 ). The molecular structure of 13 , which showed in the time scale of the 31P NMR method a fluxional behaviour, was determined by X‐ray structure analysis. All products obtained were always characterized by means of υ(CO)Ir, 1H and 31P NMR measurements. From the reactants of hydroformylation process, CO(g) 1 – 2 in different solvents afforded at 20 °C under a reversible ring opening reaction the valence‐saturated complexes [MRh(μ‐PCy2)(CO)7M(CO)5] (M = Re 16 , Mn 17 ), whereas the reaction of CO(g) and the ring‐opened 13 to [MnRh(μ‐PCy2)(μ‐H)(CO)6Mn(μ‐PCy2)(CO)4] ( 18 ) was as well reversible. The molecular structures of 17 and 18 were determined by X‐ray analysis. The υ(CO)IR, 1H and 31P NMR measurements in pressure‐resistant reaction vessels at 20 °C ascertained the heterolytic splitting of hydrogen in the reaction of 1 – 2 dissolved in CDCl3 or THF‐d8 under formation of product monoanions [M2Rh(μ‐CO)(μ‐H)(μ‐PCy2)(CO)9]– (M = Re, Mn), which also were formed by the reaction of NaBH4 and 1 – 2 . Finally, the substrate 1‐hexene and 1 and 3 gave under the release of the labil CO ligand an η2‐coordination pattern of hexene, which was weekened going from the Re to the Mn neighbor atoms. After the results of the catalytic experiments with 1 and 2 as catalysts, such change in the bonding property revealed an advantageous formation of hydroformylation products for the dirhenium rhodium catalyst 1 and that of isomerisation products of hexene for the dimanganese rhodium catalyst 2 . Par example, 1 generated n‐heptanal/2‐methylhexanal in TOF values of 246 [h–1] (n/iso = 3.4) and the c,t‐hexenes in that of 241 [h–1]. Opposotite to this, 2 achieved such values of 55 [h–1] (n/iso = 3.6) and 473 [h–1]. A triphenylphosphane substitution product of 1 increased the activity of the hydroformylation reaction about 20%, accompanied by an only gradually improved selectivity. The hydrogenation products like alcohols and saturated hydrocarbons known from industrial hydroformylation processes were not observed. The metals manganese and rhenium bound at the rhodium reaction center showed a cooperative effect. 相似文献
8.
Hans‐Christian Bttcher Marion Graf Kurt Merzweiler Christoph Wagner 《无机化学与普通化学杂志》2001,627(5):903-908
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)7(μ3‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3. 相似文献
9.
Synthesis and Crystal Structure of (PPh4)3[Re2NCl10] The rhenium(V) nitrido complex (PPh4)3[Re2NCl10] ( 1 ) is obtained from the reaction of (PPh4)[ReNCl4] with 1, 3‐dioxan‐(2‐ylmethyl)diphenyl phosphine in CH2Cl2/CH3CN in form of orange red crystals with the composition 1 ·2CH2Cl2 crystallizing in the triclinic space group P1¯ with a = 1210.7(2), b = 1232.5(1), c = 2756.3(5) pm, α = 99.68(1)°, β = 100.24(1)°, γ = 98.59(1)° and Z = 2. The crystal structure contains two symmetry independent, centrosymmetrical complex anions [Re2NCl10]3‐ with a symmetrical nitrido bridge Re=N=Re and distances Re(1) ‐ N(1) = 181.34(5) and Re(2) ‐ N(2) = 181.51(4) pm. 相似文献
10.
11.
(PPh4)2[Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)]2 – a Rhenium(VII) Complex with a Nitrido, a Dinitridosulfato(II), and a Rhena‐3,5‐dithia‐2,4,6‐triazino Function The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals, which were suitable for a crystal structure determination. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[Cl2ReVII(N3S2)(μ‐NSN)(μ‐N≡ReVIICl3)]2 ( 1 ): Space group P21/c, Z = 2, lattice dimensions at –80 °C: a = 1280.8(2), b = 1017.5(1), c = 2467.8(3) pm, β = 95.04(1)°, R = 0.049. The complex anion of 1 consists of a planar ReN3S2‐heterocycle which is connected with the second rhenium atom by a μ‐nitrido bridge as well as by a μ‐dinitridosulfato(II) ligand to form a planar Re2(N)(NSN) six‐membered heterocycle. This [Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)]– unit dimerizes via one of the N‐atoms of the (NSN)4– ligand to give a centrosymmetric Re2N2 four‐membered ring. 相似文献
12.
Selective Preparation of Twofold Diorganophosphido-bridged Metallatetrahedranes [Re2(MPR3)2(μ-PR2)2(CO)6] with Re2M2 Metal Core (M = Au, Ag) The reaction of the in situ prepared salt Li[Re2(AuPR)(μ-PR2)(CO)7Cl] (R = R′ = Cy ( 1 a ), R = Cy, R′ = Ph ( 1 b ), R = Ph, R′ = Cy ( 1 c ), R = Ph, R′ = Et ( 1 d ), R = Ph, R′ = Ph ( 1 e )) with one equivalent HPR in methanolic solution at room temperature yields the neutral cluster complexes [Re2(AuPR)(μ-PR2)(CO)7(ax-HPR) (R = R′ = R″ = Cy ( 2 a ), Ph ( 2 b ), R = R′ = Cy, R″ = Et ( 2 c ), R = Cy, R′ = R″ = Ph ( 2 d ), R = Cy, R′ = Ph, R″ = Et ( 2 e ), R = R″ = Ph, R′ = Et ( 2 f ), R = Ph, R′ = Cy, R″ = Et (2 g)). Photochemically induced these complexes react in the presence of the organic base DBU in THF solution to give the doubly phosphido bridged anions Li[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6], which were characterized as salts PPh4[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6] (R = R′ = R″ = Ph ( 3 a ), R = R′ = Ph, R″ = Cy ( 3 b ), R = Ph, R′ = Cy, R″ = Et ( 3 c ), R = R″ = Ph, R′ = Et ( 3 d )). These precursor complexes 3 then react with one equivalent of ClMPR (M = Au, Ag) to doubly phosphido bridged metallatetrahedranes [Re2(MPR3)2(μ-PR2)(μ-PR)(CO)6] (M = Au, R = R′ = R″ = Ph ( 4 a ), M = Au, R′ = Et, R = R″ = Ph ( 4 b ), M = Au, R = R′ = Ph, R″ = Cy ( 4 c ), M = Au, R = Cy, R′ = Ph, R″ = Et ( 4 d ), M = Ag, R = R′ = R″ = Ph ( 4 e )). All isolated cluster complexes were characterized and identified by the following analytical methods: NMR- (1H, 31P) and ν(CO) IR-spectroscopy and, additionally, complexes 2 b , 4 a and 4 e by X-ray structure analysis. 相似文献
13.
Phosphido- and Arsenido-bridged Dinuclear Complexes. Synthesis and Molecular Structure of (η5-C5H4R)2Zr{μ-P(SiMe3)2}2M(CO)4 (R = Me, M = Cr; R = H, M = Mo) and Synthesis of (η5-C5H5)2Zr{μ-As(SiMe3)2}2Cr(CO)4 The reaction of (η5-C5H4R)2Zr{E(SiMe3)2}2 with M(CO)4(NBD) (NBD = norbornadiene) yields the dinuclear phosphido- or arsenido-bridged complexes (η5-C5H4R)2Zr{μ-E(SiMe3)2}2M(CO)4 (R = Me, E = P, M = Cr ( 1 ); R = H, E = P, M = Mo ( 2 ); R = H, E = As, M = Cr ( 3 )). No formation of dinuclear complexes was observed in the reaction of (η5-C5H4Me)2Zr{P(SiMe3)2}2 with Ni(PEt3)4, Ni(CO)2(PPh3)2 or with NiCl2(PPh3)2 in the presence of Mg. Complexes 1 – 3 were characterised spectroscopically (i. r., n. m. r., m. s.), and X-ray structure investigations were carried out on 1 and 2 . The central four-membered ZrP2M ring is slightly puckered (dihedral angle between planes ZrP2/CrP2 14.7°, ZrP2/MoP2 14.2°). The Zr? P bond lengths are equivalent ( 1 : Zr? P1 2.654(4), Zr? P2 2.657(4) Å; 2 : Zr? P1 2.6711(9), Zr? P2 2.6585(7) Å), as are the M? P bond lengths (M = Cr ( 1 ): Cr? P1 2.513(4), Cr? P2 2.502(4) Å; M = Mo ( 2 ): Mo? P1 2.6263(7), Mo? P2 2.6311(10) Å). The long Zr ··· M distances of 3.414 Å (M = Cr ( 1 )) and 3.461 Å (M = Mo ( 2 )) indicate the absence of a metal-metal bond. 相似文献
14.
15.
The properties of the tetrakis(trifluoromethyl)‐coinage metallates(III) [M(CF3)4]? (M = Cu, Ag, Au) as W eakly C oordinating A nions (WCAs) have been investigated with quantum mechanical methods in order to quantitatively compare them to other, well‐known WCAs. Also, several new decomposition pathways have been studied. Overall the coinage metallates perform rather well and should be used more frequently in preparative chemistry. 相似文献
16.
Synthesis and Structure of the Nitrido Complexes (PPh4)2[(O3Os≡N)2 MCl2] (M = Pd und Pt) and [{(Me2PhP)3Cl2Re≡N}2PdCl2] The threenuclear complexes (PPh4)2[(O3Os≡N)2MCl2] (M = Pd ( 1a ) and Pt ( 1b )) are obtained by the reaction of (PPh4) [OsO3N] with [MCl2(NCC6H5)2] (M = Pd and Pt) in form of orange red ( 1a ) or red brown ( 1b ) crystals. The compounds crystallize isotypically in the monoclinic space group P21/n with a = 1052.35(6), b = 1376.70(6), c = 1607.3(1) pm, β = 94.669(7)°, and Z = 2 for 1a and a = 1053.27(7), b = 1371.6(1), c = 1615.9(1) pm, β = 94.557(7)°, and Z = 2 for 1b . In the centrosymmetric complex anions [(O3O≡N)2MCl2]2— a linear MCl2 moiety is connected in trans arrangement with two complexes [O3Os≡N]— via asymmetric nitrido bridges Os≡N‐M. For the M2+ cations such results a square‐planar coordination MCl2N2. The virtually linear nitrido bridges are characterized by distances Os‐N = 167.5 pm ( 1a ) and 164.2 pm ( 1b ) as well as Pd‐N = 196.2 pm and Pt‐N = 197.8 pm. The reaction of ReNCl2(PMe2Ph)3 with PdCl2(NCC6H5)2 in CH2Cl2 yields red crystals of the heterometallic complex [{(Me2PhP)3Cl2Re≡N}2PdCl2] ( 2 ). It crystallizes as 2 · 2 CH2Cl2 in the monoclinic space group C2/c with a = 2138.3(5); b = 1260.9(3); c = 2375.6(2) pm; β = 96.09(1)° and Z = 4. In the threenuclear complex [{(Me2PhP)3Cl2Re≡N}2PdCl2] with the symmetry Ci the coordination of the Pd2+ cation of the central PdCl2 unit is completed by two nitrido bridges Re≡N‐Pd to complexes (Me2PhP)3Cl2Re≡N forming a square‐planar arrangement. The distances in the linear nitrido bridges are Re‐N = 170.2 pm and Pd‐N = 197.1 pm. 相似文献
17.
Synthesis and Structure of K[Au(AuCl)(AuPPh3)8)](PF6)2 Photolysis of a mixture of Ph3PAuCl and Ph3PAuN3 (1 : 3) in toluene/THF yields in the presence of Na2[(C5H5)V(CO)3] the new cluster cation [Au(AuCl)(AuPPh3)8]+. It crystallizes from CH2Cl2 after addition of KPF6 as K[Au(AuCl)(AuPPh3)8](PF6)2 · 4 CH2Cl2. The compound forms a tetragonal structure with the space group P4/n and a = 2552.6(3), c = 1401.1(1) pm, Z = 2. The cluster cations with a spheroidal topology are built up of a centered Au8 crown whose central gold atom in addition binds a AuCl group. The cluster occupies with its center and AuCl group a fourfold axis of the space group. The radial bonds between the central and the peripheral Au atoms are in the range of 263.7 to 268.4 pm, while the distances between the peripheral atoms are longer with 291.7 to 350.9 pm. 相似文献
18.
[Fe2(μsb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2(μsb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields. 相似文献
19.
Zong‐Jie Guan Jiu‐Lian Zeng Shang‐Fu Yuan Feng Hu Dr. Yu‐Mei Lin Prof. Quan‐Ming Wang 《Angewandte Chemie (International ed. in English)》2018,57(20):5703-5707
The controlled synthesis and structure determination of a bimetallic nanocluster Au57Ag53(C≡CPh)40Br12 (Au57Ag53) is presented. The metal core has a four‐shell Au2M3@Au34@Ag51 @Au20 (M=1/3 Au+2/3 Ag) architecture. In contrast to the previously reported large nanoclusters that have highly symmetric kernel structures, the metal atoms in Au57Ag53 are arranged in an irregular manner with C1 symmetry. This cluster exhibits excellent thermal stability and is robust under oxidative or basic conditions. The silver precursors play a key role in dictating the structures of the nanoclusters, which suggests the importance of the counteranions used. 相似文献
20.
Heterometallic Cluster Complexes of the Types Re2(μ-PR2)(CO)8(HgY) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgY) (R = Ph, Cy; Y = Cl, W(η5-C5H5)(CO)3) Dinuclear complexes Re2(μ-H)(μ-PR2)(CO)8 and ReMo(μ-H)(μ-PR2)(η5-C5H5)(CO)6 (R = phenyl, cyclohexyl) were deprotonated and reacted as anions with HgCl2 to compounds of the both types Re2(μ-PR2)(CO)8HgCl) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgCl). The heterometallic three-membered cluster complexes correspond to an isolobal exchange of a proton against a cationic HgCl+ group. For one of the products ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) has been shown its conversion with NaW(η5-C5H5)(CO)3 to ReMo(μ-PCy2)(η5-C5H5)(HgW(η5-C5H5)(CO)3) under substitution of the chloro ligand, par example. The newly prepared compounds were characterized by means of IR, UV/VIS and 31P NMR data. A complete determination of the molecular structure by single crystal analyses was done in the case of Re2(μ-PCy2)(CO)8(HgCl) and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) which both are dimer because of the presence of an asymmetric dichloro bridge, and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgW(η5-C5H5)(CO)3). The structural study illustrates through comparison the influence of various metal types on an interaction between centric and edge-bridged frontier orbitals in three-membered metal rings. 相似文献