首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In elastic peak electron spectroscopy (EPES), the nearest vicinity of elastic peak in the low kinetic energy region reflects electron inelastic and quasielastic processes. Incident electrons produce surface excitations, inducing surface plasmons, with the corresponding loss peaks separated by 1–20 eV energy from the elastic peak. In this work, X‐ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for determining surface atomic composition and bulk density, whereas atomic force microscopy (AFM) is applied for determining surface morphology and roughness. The component due to electron recoil on hydrogen atoms can be observed in EPES spectra for selected primary electron energies. Simulations of EPES predict a larger contribution of the hydrogen component than observed experimentally, where hydrogen deficiency is observed. Elastic peak intensity is influenced more strongly by surface morphology (roughness and porosity) than by surface excitations and quasielastic scattering of electrons by hydrogen atoms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
A Monte Carlo simulation including surface excitation, Auger electron‐ and secondary electron production has been performed to calculate the energy spectrum of electrons emitted from silicon in Auger electron spectroscopy (AES), covering the full energy range from the elastic peak down to the true‐secondary‐electron peak. The work aims to provide a more comprehensive understanding of the experimental AES spectrum by integrating the up‐to‐date knowledge of electron scattering and electronic excitation near the solid surface region. The Monte Carlo simulation model of beam–sample interaction includes the atomic ionization and relaxation for Auger electron production with Casnati's ionization cross section, surface plasmon excitation and bulk plasmon excitation as well as other bulk electronic excitation for inelastic scattering of electrons (including primary electrons, Auger electrons and secondary electrons) through a dielectric functional approach, cascade secondary electron production in electron inelastic scattering events, and electron elastic scattering with use of Mott's cross section. The simulated energy spectrum for Si sample describes very well the experimental AES EN(E) spectrum measured with a cylindrical mirror analyzer for primary energies ranging from 500 eV to 3000 eV. Surface excitation is found to affect strongly the loss peak shape and the intensities of the elastic peak and Auger peak, and weakly the low energy backscattering background, but it has less effect to high energy backscattering background and the Auger electron peak shape. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Electron inelastic mean free path (IMFP) is an important parameter for surface chemical quantification by surface electron spectroscopy techniques. It can be obtained from analysis of elastic peak electron spectroscopy (EPES) spectra measured on samples and a Monte Carlo simulation method. To obtain IMFP parameters with high accuracy, the surface excitation effect on the measured EPES spectra has to be quantified as a surface excitation parameter (SEP), which can be calculated via a dielectric response theory. However, such calculated SEP does not include influence of elastic scattering of electrons inside samples during their incidence and emission processes, which should not be neglected simply in determining IMFP by an EPES method. In this work a Monte Carlo simulation method is employed to determine surface excitation parameter by taking account of the elastic scattering effect. The simulated SEPs for different primary energies are found to be in good agreement with the experiments particularly for larger incident or emission angles above 60° where the elastic scattering effect plays a more important role than those in smaller incident or emission angles. Based on these new SEPs, the IMFP measurement by EPES technique can provide more accurate data.  相似文献   

4.
A summary is given of the workshop entitled ‘Electron Scattering in Solids: from fundamental concepts to practical applications,’ which was held in Debrecen, Hungary, on July 4–8, 2004, under the sponsorship of the International Union of Vacuum Science, Technique, and Applications (IUVSTA). This workshop was held to review the present status and level of understanding of electron‐scattering processes in solids, to identify issues of key importance (hot topics) in the light of the most recent scientific results, and to stimulate discussions leading to a deeper understanding and new solutions of current problems. This report contains summaries of presentations and discussions in sessions on elastic scattering of electrons by atoms and solids, inelastic scattering of electrons in solids, modeling of electron transport in solids and applications, and software. The principal areas of application include Auger‐electron spectroscopy (AES), X‐ray photoelectron spectroscopy, elastic‐peak electron spectroscopy (EPES), reflection electron energy‐loss spectroscopy (REELS), secondary‐electron microscopy, electron‐probe microanalysis (EPMA), and the use of coincidence techniques in electron‐scattering experiments. A major focus of the workshop was determination of the inelastic mean free path of electrons for various surface spectroscopies, particularly corrections for surface and core‐hole effects. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

5.
Measurements of probability of elastic electron backscattering from surfaces can provide information on physical properties of the surface region with thickness comparable to the inelastic mean free path (IMFP) of electrons. The analytical technique, based on such measurements, is known as elastic peak electron spectroscopy (EPES). The most frequent application of EPES is the determination of the IMFP in solids. However, this technique can also be used to measure overlayer thickness, or to determine surface composition.

Quantitative applications of EPES, addressed here, require a reliable theoretical model describing the elastic backscattering probability from surfaces with a given structure and composition. Unfortunately, there is no simple analytical model which describes the elastic backscattering probability with an acceptable accuracy. Values of the elastic backscattering probability are usually estimated from Monte Carlo (MC) simulations of elastic backscattering events, since the theoretical model implemented in the MC scheme seems closest to reality, as compared with models leading to different analytical expressions. It is shown that the reliability of the theory is associated with accuracy of the parameters needed in the calculations. The most important parameters are the differential elastic scattering cross-sections which are presently known, especially in some angular regions, with limited accuracy. The IMFP values, determined in different laboratories via EPES, exhibit a considerable scatter, which may be due to the fact that different experimental geometries are used in measurements. Other sources of errors are briefly discussed.  相似文献   


6.
In the present work, polycrystalline CoPd alloys in varying range of bulk atomic percent composition (Co30Pd70, Co50Pd50 and Co70Pd30) are investigated by means of X‐ray photoelectron spectroscopy (XPS). The results of conventional XPS quantitative multiline (ML) approach are compared to the results obtained on the basis of XPS lines shape analysis, where the selected XPS or X‐ray induced Auger electron (XAES) transitions, are processed using the pattern recognition method known as the fuzzy k‐nearest neighbour (fkNN) rule. The fkNN rule is applied to the following spectra line shapes: Pd MNV, Co 2p, Co LMM, Pd 3d and valence band, analysing electrons in a varying range of selected kinetic energies. Both methods showed the surface segregation of Pd in Co30Pd70 and Co50Pd50 alloys. The results of the ML, the binding energy shift (ΔBE) analysis and the fkNN rule remained in agreement. Discrepancies in quantitative results obtained using different approaches are discussed within the accuracy of the applied methods, differences due to mean escape depth (MED) of electrons in considered transitions, their depth distribution function, the sensitivity of electron transition line shape on the environmental change (weaker effect for the inner shell transitions, and stronger effect for the outer shell transitions and Auger electron spectroscopy (AES) electrons transitions) and the non‐uniform depth profile concentrations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Elastic peak electron spectroscopy (EPES) was employed to measure the inelastic mean free path (IMFP) for energies between 500 and 1600 eV for five insulating organic compounds: Kapton, polyethylene (PE), poly(methyl methacrylate) (PMMA), polystyrene (PS) and polytetrafluoroethylene (PTFE). A Ni and a Si sample were used as reference materials to avoid measurement of the elastic reflection coefficient in absolute units. Correction of experimental elastic peak intensities for surface excitations was performed which turned out to be essential. The results are compared with recent evaluations of optical constants to yield the IMFP in the literature giving satisfactory agreement, with deviations generally below 20%. Investigation of the kinematics in an electron reflection experiment shows that the dispersion coefficient used in REELS data analysis cannot be identified with the true plasmon dispersion.  相似文献   

9.
《Electroanalysis》2003,15(13):1134-1138
In this study, the conductivities of various polypyrrole (PPy) films were evaluated via the corresponding surface‐enhanced Raman scattering (SERS) spectrum and X‐ray photoelectron spectroscopy (XPS). The results indicate that the peak position of C?C bonds stretching of PPy obtained from the SERS spectrum shows more exactly both qualitatively and quantitatively representing the conductivity of PPy than the N+/N ratio or the doping level obtained from the XPS analysis does. Namely the peak position of C?C bonds stretching of PPy monotone decreases to a lower frequency side with the increase of the conductivity of PPy. Furthermore, a satisfactory correlated equation between them was obtained. On the contrary, neither the N+/N ratio nor the doping level can be qualitatively reflective on the corresponding conductivity of PPy.  相似文献   

10.
Initial surface oxidation and nanoscale morphology on Cu{100}, Cu(Ag) and Ag/Cu{100} have been investigated in situ by X‐ray photoelectron spectroscopy (XPS), X‐ray induced Auger electron spectroscopy (XAES) and the inelastic electron background analysis as a function of oxygen exposure at 3.7 × 10?2 and 213 mbar pressures at a surface temperature of 373 K. Relative Cu2O concentrations have been quantified by analysis of the peak shape of the XAES Cu LMM transition. The surface morphology of Cu2O islands and the Ag layer has been characterized by inelastic electron background analysis of XAES O KLL and Ag 3d transitions. Oxygen‐induced segregation of Cu, as well as the subsequent Cu2O island formation on Cu(Ag) and Ag/Cu{100} surfaces, has been investigated quantitatively. Our results indicate that Ag has a clear inhibitive effect on the initial oxidation and Cu2O island formation on Cu(Ag) and Ag/Cu{100} surfaces. The Cu2O islands are also observed to remain highly strained on Ag/Cu{100} even at higher O2 exposures. The results suggest that strained Cu2O islands eventually penetrate through the buried Ag layer, and in conjunction with segregating Cu atoms enable the oxidation to proceed at a similar rate to or even faster than on the unalloyed Cu surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The initial steps in the formation of thin films have been investigated by analysis of the peak shape (both inelastic background and elastic contributions) of X‐ray photoelectron spectra. Surface coverage and averaged height of the deposited particles have been estimated for several overlayers (nanometre range) after successive deposition cycles. This study has permitted the assessment of the type of nucleation and growth mechanisms of the films. The experiments have been carried out in situ in the preparation chamber of an XPS spectrometer. To check the performance of the method, several materials (i.e. cerium oxide, vanadium oxide and cadmium sulfide) have been deposited on different substrates using a variety of preparation procedures (i.e. thermal evaporation, ion beam assisted deposition and plasma enhanced chemical vapour deposition). It is shown that the first deposited nuclei of the films are usually formed by three‐dimensional particles whose heights and degree of surface coverage depend on the chemical characteristics of the growing thin film and substrate materials, as well as the deposition procedure. It is concluded that XPS peak shape analysis can be satisfactorily used as a general method to characterize morphologically the first nanometric moieties that nucleate a thin film. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Ultrathin carbon films were grown on different types of metallic substrates. Free‐standing foils of Cu and Ni were prepared by electroforming, and a pure Ni film was obtained by galvanic displacement on a Si wafer. Commercial foil of Ni 99.95% was used as a reference substrate. Carbon films were grown on these substrates by chemical vapour deposition in a CH4‐H2 atmosphere. Obtained films were characterized by Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and ultraviolet photoemission spectroscopy. The XPS at grazing collection angle was used to determine the thickness of carbon films. Depending on the deposition parameters, the films of graphene or graphite were obtained on the different substrates. The uniformity of graphene and its distribution over the sample area were investigated from Raman data, optical images, and XPS chemical maps. The presence of graphene or graphite in the films was determined from the Raman spectra and Auger peak of C KVV. For this purpose, the D parameter, which is a fingerprint of carbon allotropes, was determined from C KVV spectra acquired by using X‐rays and electron beam. A formation of an intermediate layer of metal hydroxide was revealed in the samples with graphene overlayer.  相似文献   

13.
Quantification of surface‐ and bulk‐analytical methods, e.g. Auger‐electron spectroscopy (AES), X‐ray photoelectron spectroscopy (XPS), electron‐probe microanalysis (EPMA), and analytical electron microscopy (AEM), requires knowledge of reliable elastic‐scattering cross sections for describing electron transport in solids. Cross sections for elastic scattering of electrons and positrons by atoms, ions, and molecules can be calculated with the recently developed code ELSEPA (Elastic Scattering of Electrons and Positrons by Atoms) for kinetic energies of the projectile from 10 eV to 50 eV. These calculations can be made after appropriate selection of the basic input parameters: electron‐density distribution, a model for the nuclear‐charge distribution, and a model for the electron‐exchange potential (the latter option applies only to scattering of electrons). Additionally, the correlation‐polarization potential and an imaginary absorption potential can be considered in the calculations. We report comparisons of calculated differential elastic‐scattering cross sections (DCSs) for silicon and gold at selected energies (500 eV, 5 keV, 30 keV) relevant to AES, XPS, EPMA, and AEM, and at 100 MeV as a limiting case. The DCSs for electrons and positrons differ considerably, particularly for medium‐ and high‐atomic‐number elements and for kinetic energies below about 5 keV. The DCSs for positrons are always monotonically decreasing functions of the scattering angle, while the DCSs for electrons have a diffraction‐like structure with several minima and maxima. A significant influence of the electron‐exchange correction is observed at 500 eV. The correlation‐polarization correction is significant for small scattering angles at 500 eV, while the absorption correction is important at energies below about 10 keV. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The Na? K (Na10K5) silicate glass, unirradiated and electron irradiated (electron dose from 25 to 8239 Cm?2) is investigated using XPS. The measurements are performed in the angular‐resolved ADES‐400 spectrometer using AlKα X‐ray radiation and an electron beam of energy 2 keV. Owing to surface charging and ambiguity of identification of the atomic oxidized chemical states, the line shapes of selected XPS transitions are analyzed with the aid of the pattern recognition (PR) method. This method is based on a distance measure and deals with spectra representation as vectors in the n‐dimensional space. The algorithm presented, called the fuzzy k‐nearest neighbor (fkNN) rule, allows for identification of ambiguous vectors with the membership vectors described by classes membership probabilities. Under electron irradiation, the Na and K content in a surface region undergoesincrease and then slow systematic decrease. The line shape analysis indicates difficult classification of XPS spectra recorded for unirradiated and irradiated glass, especially for Na 1s transition. The chemical state of Na is a mixture of elemental and oxidized form and remains unchanged for all electron doses. Larger changes in the chemical form are observed for the K atom. In an unirradiated silicate glass, a mixture of elemental and oxide form is observed with increasing content of oxide under irradiation. The alkali atoms, Na and K, exhibit a migration effect. Comparison of PR and fitting results indicates better reliability and accuracy of the PR method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a systematic X‐ray photoelectron spectroscopy (XPS)study of the Ni silicides Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2 produced by annealing of sputtered thin films. The in situ XPS study focuses on both the core level peaks and Auger peaks. The peak positions, shapes, satellites as well as Auger parameters are compared for different silicides. The factors that influence the Ni core level peak shifts are discussed. The Ni 2p3/2 peak shape and satellites are correlated with the valence band structure. The effect of argon ion etching on surface composition and chemical states is also investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A wide range of analytical techniques has been used to study an Egyptian funerary mask of the Ptolemaic period (305-30 bc ). Secondary electron (SE) and back-scattering (BS) images, recorded by a scanning electron microscope (SEM), provided a detailed representation of the metallurgical techniques used to construct the gilded mask. It is confirmed, that the golden leaf used to cover the mask is the product of an antique refinery practice, so called, cementation process of naturally occurring alloy of gold and silver, namely electrum. Complementary results of SEM-electron dispersion spectroscopy (EDS) and electron probe microanalysis (EPMA)–wavelength dispersion spectroscopy (WDS) provided chemical compositions of the golden leaf as well as in the plaster base of the mask. X-ray photoemission spectroscopy (XPS) revealed the presence of Au, Ag, Si, S, Cl, Ca, and N, in addition to O and C. Relative concentration of Au/Ag at the surface has been measured by XPS to be 70% to 30%. XPS depth profiling verified silver-enrichment at the surface, as ratio of gold to silver is measured to be 80% to 20% at the depth of 15 nm. XPS chemical mapping images of gold and silver confirmed a rather inhomogeneous character of Au/Ag relative concentration at the surface. The main diffraction peaks in the X-ray diffraction (XRD) spectrum coincide with diffraction peaks of pure gold, silver metals, and magnesium calcite Mg0.03Ca0.97CO3. Whereas, Raman spectroscopy results implied the existence of Ag2S, a tarnishing compound, on the golden area of the mask.  相似文献   

17.
The effects of surface sputtering by 1.0‐MeV Au ion implantation in commercially pure Ti and its alloy Ti‐6Al‐4V have been studied. These materials are associated with applications in orthopaedic implants. There are few studies that try to explain the ion implantation process of Au in these materials when considering the effects generated on the surface by sputtering, especially at energies of the order of MeV. Discs of these materials were mirror polished and then implanted with 1.0‐MeV Au ions for 4.7 × 1017 ions/cm2 at 45° incident angle with respect to the surface. Part of the eroded material was deposited simultaneously on glass slides to determine their spatial distribution. These discs and the slides were analysed by Rutherford backscattering spectroscopy (RBS), scanning electron microscopy (SEM), optical microscopy and atomic force microscopy. The implanted materials show the initial production of surface ripples that evolve into banded structures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A new analysis of reflection electron energy‐loss spectroscopy (REELS) spectra is presented. Assuming inelastic scattering in the bulk to be quantitatively understood, this method provides the distribution of energy losses in a single surface excitation in absolute units without the use of any fitting parameters. For this purpose, REELS spectra are decomposed into contributions corresponding to surface and volume excitations in two steps: first the contribution of multiple volume excitations is eliminated from the spectra and subsequently the distribution of energy losses in a single surface scattering event is retrieved. This decomposition is possible if surface and bulk excitations are uncorrelated, a condition that is fulfilled for medium‐energy electrons because the thickness of the surface scattering layer is small compared with the electron elastic mean free path. The developed method is successfully applied to REELS spectra of several materials. The resulting distributions of energy losses in an individual surface excitation are in good agreement with theory. In particular, the so‐called begrenzungs effect, i.e. the reduction of the intensity of bulk losses due to coupling with surface excitations near the boundary of a solid‐state plasma, becomes clearly observable in this way. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
We have made calculations of N 1s, O 1s, Si(oxide) 2p, Hf 4f, and Si(substrate) 2p photoelectron intensities at selected emission angles for films of SiO1.6N0.4 and HfO1.9N0.1 of various thicknesses on silicon. These calculations were made with the National Institute of Standards and Technology (NIST) Database for Simulation of Electron Spectra for Surface Analysis (SESSA) to investigate effects of elastic scattering and analyzer‐acceptance angle that could be relevant in the analysis of angle‐resolved X‐ray photoelectron spectroscopy (ARXPS) experiments. The simulations were made for an XPS configuration with a fixed angle between the X‐ray source (i.e. for the sample‐tilting mode of ARXPS) and with Al and Cu Kα X‐ray sources. The no‐loss intensities changed appreciably as elastic scattering was switched ‘on’ and ‘off’, but changing the analyzer‐acceptance angle had a smaller effect. Ratios of intensities for each line from the overlayer film for the least realistic model condition (elastic scattering switched ‘off’, small analyzer‐acceptance angle) to those from the most realistic model condition (elastic scattering switched ‘on’, finite analyzer‐acceptance angle) changed relatively slowly with emission angle, but the corresponding intensity ratio for the Si(substrate) 2p line changed appreciably with emission angle. The latter changes, in particular, indicate that neglect of elastic‐scattering effects can lead to erroneous results in the analysis of measured ARXPS data. The elastic‐scattering effects were larger in HfO1.9N0.1 than in SiO1.6N0.4 (due to the larger average atomic number in the former compound) and were larger with the Al Kα X‐ray source than with the Cu Kα source because of the larger cross sections for elastic scattering at the lower photoelectron energies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Sputter depth profiling using Auger electron spectroscopy (AES) is influenced by the electron backscattering contribution to the AES intensity. When approaching an interface between two components having a different backscattering factor, the shape of the profile is characteristically distorted. This distortion is taken into account in a modified version of the mixing‐roughness‐information depth (MRI) model. The modification is based on the simplified assumption that the influence of the backscattering effect of the component below the interface increases exponentially with decreasing distance of the actual surface to the interface. Application of the modified MRI model is shown to yield excellent results of profile calculation for AES depth profiling of Si/W, C/Ta, C/Ti, and Au/TiO2 interfaces, with backscattering factor ratios close to those predicted by the Ichimura–Shimizu relation. A simple correction of the backscattering influence is proposed and discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号