首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The kinetics of anation of chromium(III) species, [Cr(H2O)6]3+ and [Cr(H2O)5OH]2+, by DL-methionine have been studied spectrophotometrically. Effects of varying [methionine]T, [H+], and temperature were investigated. The results are in accord with a mechanism involving a fast 11 outer-sphere association between chromium(III) species and amino acid zwitterion, followed by transformation of the outer-into inner-sphere complex by slow interchange. The rate law consistent with the mechanism is as follows:
  相似文献   

2.
A novel chromium(III) complex of tetraoxalylurea was prepared. In aqueous solutions, [CrIII(H2L)(H2O)]+ (H2L = diprotonated tetraoxalylurea) is oxidized by IO 4 according to the rate law
  相似文献   

3.
The decomposition of hydrogen peroxide in the presence of hydroxonitrilotri(methylenephosphonato)iron(III), [Fe(NTMP)(OH)4–], was studied in nitrate media (=0.10–0.26 M) over the 0.2–0.5 mM concentration range for the iron complex and the temperature range 26–40°C. The rate law;
  相似文献   

4.
Alkaline hexacyanoferrate(III) oxidation of freshly prepared solutions of CrIII (pH>12) at 27°C follows the rate law, Equation 1:
  相似文献   

5.
The kinetics of the reaction of manganese(III) with oxalic acid (OA) has been studied in H2SO4 solutions. Under the experimental conditions of 6 × 10–3 <>0 < 0.4=" mol=">–3 and [H2SO4]0 0.2 mol dm–3 the observed pseudo-first order rate constant k obs follows the expression
  相似文献   

6.
The kinetics of substitution of aqua ligands fromcis-diaqua-bis(biguanide)cobalt(III) and chromium(III) ions by aspartic acid in EtOH–H2O media have been studied spectrophotometrically in the 30 to 45°C range. We propose the following rate law for the anation
  相似文献   

7.
The kinetics of the oxidation of [CrIII(H2O)(XOH)], (XOH=N-(2-hydroxycyclohexyl)ethylenediaminetriacetate) to CrVI by periodate have been investigated in aqueous solution at various pH values (6.00–7.20) and temperatures (15.0–35.0°C). The reaction follows the rate law:
  相似文献   

8.
New high yield routes to the high nuclearity hydrido carbonyl clusters [H5Os10(CO)24]- and [H4Os10(CO)24]2-, model systems for the chemisorption of CO and H2 on metal surfaces, are reported. [H5Os10(CO)24]- is obtained in good yields by hydrogenation (1 atm) at 200°C of physisorbed [Os(CO)3(OH)2]n whereas in refluxing ethylene glycol solution, that is less acidic than the silica surface, [H4Os10(CO)24]2- is obtained in high yield starting from [Os(CO)3(OH)2]n or, more conveniently, from -[Os(CO)3Cl2]2 in the presence of the stoichiometric amount of sodium carbonate. The quantitative equilibrium
is confirmed.  相似文献   

9.
The solubility of siderite (FeCO3) at 25°C under constant CO2 partial pressure [p(CO2)] was determined in NaCl solutions as a function of ionic strength. The dissolution of FeCO3(s) for the reaction
has been determined as a function of pH = – log[H+]. From these values we have determined the equilibrium constant for the stoichiometric solubility to FeCO3(s) in NaCl
These values have been fitted to the equation
with a standard error of s = 0.15. The extrapolated value of log(K o sp) – 10.9 in water is in good agreement with data in the literature (– 10.8 to – 11.2) determined in solutions of different composition and ionic strength.The measured values of the activity coefficient, T(Fe2+) T(CO3 2–), have been used to estimate the stability constant for the formation of the FeCO3 ion pair, K*(FeCO3). The values of K*(FeCO3) have been fitted to the equation (s = 0.09)
The value of log[K o(FeCO3)] in water found in this study (6.3 ± 0.2) is slightly higher than the value found from extrapolations in 1.0 m NaClO4 solutions (5.9 ± 0.2). These differences are related to the model used to determine the activity coefficients of the Fe(II) and carbonate species in the two solutions.  相似文献   

10.
The kinetics of aqua ligand substitution fromcis-[Ru(bipy)2(H2O)2]2+ by 1, 10-phenanthroline (phen) have been studied spectrophotometrically in the 35 to 50°C temperature range. We propose the following rate law for the reaction within the 3.65 to 5.5 pH range:
  相似文献   

11.
The kinetics of substitution of aqua ligands from the hexaaquochromium(III) ion by 2-aminopyridine (2-ampyH+) in aqueous medium has been studied spectrophotometrically in the 40–55° C range. The rate law involving the outer sphere complex formation has been established at pH 2.7 as
  相似文献   

12.
Summary Stability constants (K MAL MA ) and other thermodynamic parameters of the MAL complexes (charges omitted) [M=CoII, NiII, CuII or ZnII; AH2=8-hydroxyquinoline-5-sulphonic acid; LH2=catechol (L1H2), 1,2-dihydroxybenzene-sulphonate (L2H2), 1,2-dihydroxybenzene-3, 5-disulphonate (L3H2), 4-nitro-1,2-dihydroxybenzene (L4H2)] have been determined at 25°C and at an 0.1 M KNO3 ionic strength by the extended Irying-Rossotti technique. The stability constants lie in the sequences: K_{MAL}^{MA} ?K_{ML_2 }^{ML} ; K_{MAL}^{MA_1 } > K_{MAL}^{MA_2 } > K_{MAL}^{MA_3 } \gg K_{MAL}^{MA_4 } $$ " align="middle" border="0"> and all follow the Irving-Williams stability order. These observations can be explained in terms of electrostatic interaction, change of electrophilicity of the bound metal and -acidic character of the primary ligand.  相似文献   

13.
Summary The oxidation of H2O2 by [W(CN)8]3– has been studied in aqueous media between pH 7.87 and 12.10 using both conventional and stopped-flow spectrophotometry. The reaction proceeds without generation of free radicals. The experimental overall rate law, , strongly suggests two types of mechanisms. The first pathway, characterized by the pH-dependent rate constant k s, given by , involves the formation of [W(CN)8· H2O2]3–, [W(CN)8· H2O2·W(CN)8]6– and [W(CN)8· HO]3– intermediates in rapid pre-equilibria steps, and is followed by a one-electron transfer step involving [W(CN)8·HO]3– (k a) and its conjugate base [W(CN)8·O]4– (k b). At 25 °C, I = 0.20 m (NaCl), the rate constant with H a =40±6kJmol–1 and S a =–151±22JK–1mol–1; the rate constant with H b =36±1kJmol–1 and S b =–136±2JK–1mol–1 at 25 °C, I = 0.20 m (NaCl); the acid dissociation constant of [W(CN)8·HO]3–, K 5 =(5.9±1.7)×10–10 m, with and is the first acid dissociation constant of H2O2. The second pathway, with rate constant, k f, involves the formation of [W(CN)8· HO2]4– and is followed by a formal two-electron redox process with [W(CN)8]3–. The pH-dependent rate constant, k f, is given by . The rate constant k 7 =23±6m –1 s –1 with and at 25°C, I = 0.20 m (NaCl).  相似文献   

14.
The oxidation of H2NOH is first-order both in [NH3OH+] and [AuCl4 ]. The rate is increased by the increase in [Cl] and decreased with increase in [H+]. The stoichiometry ratio, [NH3OH+]/[AuCl4 ], is 1. The mechanism consists of the following reactions.
The rate law deduced from the reactions (i)–(iv) is given by Equation (v) considering that [H+] K a.
The reaction (iii) is a combination of the following reactions:
The activation parameters for the reactions (ii) and (iii) are consistent with an outer-sphere electron transfer mechanism.  相似文献   

15.
Conclusions Rhenium oxides with perovskite structure of the general formula where BIII=Y and Sm, and Ba3LaZnReWO12 containing Re(VII), exhibit catalytic activity in hydrogenation of ethyl acetate.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1236–1238, June, 1986.  相似文献   

16.
The kinetics of oxidation of the chromium(III)-DL- aspartic acid complex, [CrIIIHL]+ by periodate have been investigated in aqueous medium. In the presence of FeII as a catalyst, the following rate law is obeyed:
Catalysis is believed to be due to the oxidation of iron(II) to iron(III), which acts as the oxidizing agent. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO 4 - to CrIII.  相似文献   

17.
The rapid oxidation ofbis(2,4,6-tripyridyl-1,3,5-triazine)-iron(II), [Fe(TPTZ)2]2+, bytrans-1,2-diaminocyclohexanetetraacetatomanganate(III), [MnIII(Y)], in acetate buffers was monitored using stopped-flow spectrophotometry. The reaction is first order in the substrate and evidence was obtained for pre-complexation between the oxidant and the substrate. The reaction rate increases as the pH increases. Characterisation of the products using the radiotracers54Mn and59Fe indicated that [MnII(Y)]2− and [Fe(TPTZ)2]3+ are the final products. The reaction obeys the rate law:
  相似文献   

18.
The solubilities of lanthanum carbonate La2(CO3)3·8H2O in solutionsS 0([H+]=H mol kg–1, [Na+]=(IH) mol kg–1, [ClO 4 ]=I mol kg–1) at various fixed partial pressures of CO2 have been investigated at 25.0 °C. The hydrogen ion molality and the total molality of La(III) ion in equilibrium with the solid phase were determined by e.m.f. and analytical methods, respectively. The stoichiometric solubility constants
  相似文献   

19.
The sulfur-containing biomolecule, cysteine has a role in physiological and natural environment because of its strong interactions with metals. To understand these interactions of metals with cysteine, one needs reliable dissociation constants for the protonated cysteine species [ CH(CH2SH)COOH; H3B+]. The values of dissociated constants, p , for protonated cysteine species (H3B+ H+ + H2B, K 1; H2B H+ + HB,K 2; HB H+ + B2–,K 3) were determined from potentiometric measurements in NaCl solutions as a function of ionic strength, 0.5–6.0 mol-(kgH2O)–1 and between 5, and 45°C. The equations
were fitted to the results with a standard errors of the fits of 0.116, 0.057, and 0.093 for , , and , respectively. The results were used to determine new Pitzer parameters (0, 1, and C) for the interactions of Na+ and Cl with cysteine species. These coefficients can be used to make reasonable estimates of the activity coefficients of the cysteine species and for the dissociation of cysteine in physiological and natural waters containing mostly NaCl.  相似文献   

20.
Two new compounds Pd2Os3(CO)12 , 13 and Pd3Os3(CO)12 , 14 have been obtained from the reaction of with Os3(CO)12 at room temperature. The products were formed by the addition of two and three groups to the Os–Os bonds of Os3(CO)12. Compounds 13 and 14 interconvert between themselves by intermolecular exchange of the groups in solution. Compounds 13 and 14 have been characterized by single crystal X-ray diffraction analyses.Dedicated to Professor Brian F. G. Johnson on the occasion of his retirement – 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号