首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New water-soluble functional polymer nanocomposites with nanoparticles of metallic silver in a matrix of 1-vinyl-1,2,4-triazole copolymers with crotonic acid have been synthesized. The resulting nanocomposites contain isolated silver nanoparticles 2–12 nm in diameter, preferably spherical in shape, and uniformly distributed in the polymer matrix. ATR IR spectroscopy has revealed that the nanoparticles affect the state of the carboxyl groups in the polymer matrix. It has been found that the size of zero-valent silver nanoparticles depends on the ratio of monomer units in the polymer matrix. The thermo-oxidative stabilities of the synthesized copolymers and polymer nanocomposites produced on their basis have been examined.  相似文献   

2.
Gold- and gold/silver-dendrimer nanocomposites have been synthesized by UV irradiation of their salts dissolved in ethanol containing dendrimers. As dendrimers, poly(amidomaine) PAMAM dendrimers and poly(propyleneimine) PPI dendrimers of various generations were used. The photoreduction of their salts is greatly accelerated by using benzoin as a photoinitiator. The sizes of gold in the nanocomposites are affected by the concentration of benzoin as well as the concentration of dendrimers, but are hardly changed with the kind of dendrimers. For gold/silver-dendrimer nanocomposites, the absorption spectra of gold/silver nanoparticles in the nanocomposites are very similar to the theoretical spectra of gold/silver alloy nanoparticles, suggesting the formation of gold/silver alloy nanoparticles. From the comparison of TEM and DLS measurements, it is found that the metal-dendrimer nanocomposites consist of metal nanoparticles covering by dendrimer molecules.  相似文献   

3.
Composite nanoparticles representing silver nanoparticle-containing polymer gels have been synthesized. The synthesis comprises two main stages. Initially, monodisperse hydrogel particles with a controlled diameter of approximately 500 nm are obtained by N-isopropylacrylamide polymerization. Then, silver ions are reduced on the surface of the polymer network. Variations in the concentration ratio between reductants and silver nitrate make it possible to produce silver nanoparticles with sizes in a range of 10–30 nm and different packing densities on the gel particle surface. The resultant nanocomposites have been studied by transmission electron microscopy, spectrophotometry, and dynamic light scattering. Depending on the size and packing density of the silver nanoparticles on the polymer particle surface, the plasmon resonance of the nanocomposites varies in a range of 420–750 nm, which determines variations in the color of the colloid from yellow, orange, and red to blue and blue-green. After the inclusion of silver nanoparticles, nanogels of poly(N-isopropylacrylamide) retain their capability for thermosensitive phase transition with a lower critical mixing temperature of 31°C.  相似文献   

4.
A one-step process was used for the preparation of gold and silver nanoparticles stabilized by an aminophthalocyanine macrocycle. The resultant nanoparticles were characterized by absorption spectra, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The nanoparticles were found to possess relatively narrow size distribution. The gold nanoparticles have an average diameter of ~2 nm, while silver particles have 4–5 nm. Preliminary studies on fluorescence and surface enhanced Raman spectroscopy were carried out using these nanoparticles. Fluorescence studies indicate that gold nanoparticles do not quench the fluorescence, while silver nanoparticles do. The stabilized nanoparticles showed enhancement of the Raman signals, thus revealing that they are good substrates for surface enhanced Raman scattering studies.  相似文献   

5.
Upon transmission of visible light through composites comprising of a transparent polymer matrix with embedded particles, the intensity loss by scattering is substantially reduced for particle diameters below 50–100 nm (nanoparticles, nanosized particles). As a consequence, related materials (nanocomposites) have found particular interest in optical studies. The first part of this article deals with a historical survey on nanoparticles and nanocomposites and the importance of small particle sizes on their optical properties. The second part focuses on results from our laboratory concerning nanocomposites with extremely high or low refractive indices and dichroic nanocomposites and their application in bicolored liquid crystal displays (LCD). The inorganic colloids required for these studies (lead sulfide, iron sulfides, gold, and silver) were prepared in situ in presence of a polymer or isolated as redispersable metal colloids modified at the surface with a self‐assembled monolayer (SAM) of an alkanethiol. The nanocomposites themselves were finally obtained by coprecipitation, spin coating, solvent casting or melt extrusion, with poly(ethylene oxide), gelatin, poly(vinyl alcohol) and polyethylene as matrix polymers.  相似文献   

6.
Novel organic-inorganic nanocomposites were synthesized by chemical reduction of silver ions from silver acetate in DMSO and DMF solutions in the presence of the stabilizing copolymer of 1-vinyl-1,2,4-triazole-acrylonitrile. The solvents DMSO and DMF can act as efficient reducing agents for silver ions, which makes it possible to carry out the reaction under mild conditions and simplify procedures of nanocomposite isolation. The structure and properties of the starting copolymer and related nanocomposites were characterized by UV, IR, and 1H and 13C NMR spectroscopy, as well as transmission electron microscopy and thermogravimetry. The prepared polymer nanocomposites contain 6.8–7.2% silver in the form of nanoparticles with a size of 2–20 nm uniformly dispersed in the polymer matrix. The nanocomposites are readily soluble in DMSO and DMF and do not decompose on heating to 260 °C.  相似文献   

7.
In this study, hydrogel-silver nanocomposites have been synthesized by a unique methodology, which involves formation of silver nanoparticles within swollen poly (acrylamide-co-acrylic acid) hydrogels. The formation of silver nanoparticles was confirmed by transmission electron microscopy (TEM) and surface plasmon resonance (SPR) which was obtained at 406 nm. The TEM of hydrogel-silver nanocomposites showed almost uniform distribution of nanoparticles throughout the gel networks. Most of the particles, as revealed from the particle-size distribution curve, were 24-30 nm in size. The X-ray diffraction pattern also confirmed the face centered cubic (fcc) structure of silver nanoparticles. The nanocomposites demonstrated excellent antibacterial effects on Escherichia coli (E. coli). The antibacterial activity depended on size of the nanocomposites, amount of silver nanoparticles, and amount of monomer acid present within the hydrogel-silver nanocomposites. It was also found that immersion of plain hydrogel in 20 mg/30 ml AgNO(3) solution yielded nanocomparticle-hydrogel composites with optimum bactericidal activity.  相似文献   

8.
Mixing aqueous dispersions of thiocyanate ion coated small (< 3.5 nm diameter) gold nanoparticles and EDTA covered larger (> 22 nm diameter) silver nanoparticles, results in the formation of robust gold encased silver nanoparticles; in contrast to using larger (> 11 nm diameter) gold nanoparticles which forms chained structures.  相似文献   

9.
The hemostatic activity of polymeric gold and silver nanocomposites depends on their kinetic stability caused by the interaction of the ligand with nanoparticles. The properties of the nanoparticles are determined by the metal nature.  相似文献   

10.
Various metal-chitosan nanocomposites were synthesized, including silver (Ag), gold (Au), platinum (Pt), and palladium (Pd) in aqueous solutions. Metal nanoparticles were formed by reduction of corresponding metal salts with NaBH4 in the presence of chitosan. And chitosan molecules adsorbing onto the surface of as-prepared metal nanoparticles formed the corresponding metal-chitosan nanocomposites. Transmission electron microscopy (TEM) images and UV-vis spectra of the nanocomposites revealed the presence of metal nanoparticles. Comparison of all the resulting particles size, it shows that silver nanoparticles are much larger than others (Au, Pt and Pd). In addition, the difference in particles size leads to develop different morphologies in the films cast from prepared metal-chitosan nanocomposites. Polarized optical microscopy (POM) images show a batonet-like structure for Ag-chitosan nanocomposites film, while for the films cast from other metal (Au, Pt, and Pd)-chitosan nanocomposites, some branched-like structures with a few differences among them were observed under POM observation.  相似文献   

11.
Lee TM  Cai H  Hsing IM 《The Analyst》2005,130(3):364-369
In this paper we report the catalytic effects of various gold nanoparticles for silver electrodeposition on indium tin oxide (ITO)-based electrodes, and successfully apply this methodology for signal amplification of the hybridization assay. The most widely used gold nanoparticle-based hybridization indicators all promote silver electrodeposition on the bare ITO electrodes, with decreasing catalytic capability in order of 10 nm gold, DNA probe-10 nm gold conjugate, streptavidin-5 nm gold, and streptavidin-10 nm gold. Of greater importance, these electrocatalytic characteristics are affected by any surface modifications of the electrode surfaces. This is illustrated by coating the ITO with an electroconducting polymer, poly(2-aminobenzoic acid)(PABA), as well as avidin molecules, which are promising immobilization platforms for DNA biosensors. The catalytic silver electrodeposition of the gold nanoparticles on the PABA-coated ITO surfaces resembles that on the bare surfaces. With avidin covalently bound to the PABA, it is interesting to note that the changes in electrocatalytic performance vary for different types of gold nanoparticles. For the streptavidin-5 nm gold, the silver electrodeposition profile is unaffected by the presence of the avidin layer, whereas for both the 10 nm Au and DNA probe-10 nm gold conjugate, the deposition profiles are suppressed. The streptavidin-5 nm gold is employed as the hybridization indicator, with avidin-modified (via PABA) ITO electrode as the immobilization platform, to enable signal amplification by the silver electrodeposition process. Under the conditions, this detection strategy offers a signal-to-noise ratio of 20. We believe that this protocol has great potential for simple, reproducible, highly selective and sensitive DNA detection on fully integrated microdevices in clinical diagnostics and environmental monitoring applications.  相似文献   

12.
New polymer nematic nanocomposites are prepared containing 1.43–4.64 wt % of silver nanoparticles whose mean dimensions are 2–4 nm. According to 2H NMR spectroscopic measurements, on increasing the content of metallic nanoparticles, the orientational order parameter Szz of the nematic phase shown by the nanocomposites increases.  相似文献   

13.
A facile bottom-up 'green' and rapid synthetic route using Murraya Koenigii leaf extract as reducing and stabilizing agent produced silver nanoparticles at ambient conditions and gold nanoparticles at 373 K. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. This method allows the synthesis of well-dispersed silver and gold nanoparticles having size ~10 nm and ~20 nm, respectively. Silver nanoparticles with size ~10 nm having symmetric SPR band centered at 411 nm is obtained within 5 min of addition of the extract to the solution of AgNO3 at room temperature. Nearly spherical gold nanoparticles having size ~20 nm with SPR at 532 nm is obtained on adding the leaf extract to the boiling solution of HAuCl4. Crystallinity of the nanoparticles is confirmed from the high-resolution TEM images, selected area electron diffraction (SAED) and XRD patterns. From the FTIR spectra it is found that the biomolecules responsible for capping are different in gold and silver nanoparticles. A comparison of the present work with the author's earlier reports on biosynthesis is also included.  相似文献   

14.
Biosynthesis of nanoparticles is under exploration is due to wide biomedical applications and research interest in nanotechnology. Bioreduction of silver nitrate (AgNO(3)) and chloroauric acid (HAuCl(4)) for the synthesis of silver and gold nanoparticles respectively with the plant extract, Mentha piperita (Lamiaceae). The plant extract is mixed with AgNO(3) and HAuCl(2), incubated and studied synthesis of nanoparticles using UV-Vis spectroscopy. The nanoparticles were characterized by FTIR, SEM equipped with EDS. The silver nanoparticles synthesized were generally found to be spherical in shape with 90 nm, whereas the synthesized gold nanoparticles were found to be 150 nm. The results showed that the leaf extract of menthol is very good bioreductant for the synthesis of silver and gold nanoparticles and synthesized nanoparticles active against clinically isolated human pathogens, Staphylococcus aureus and Escherichia coli.  相似文献   

15.
溶剂效应制备核壳纳米银及荧光素金属增强荧光   总被引:2,自引:0,他引:2  
直链或支链高分子可用来制备和稳定纳米材料,具有丰富羟基的高分子通过分子间和分子内氢键作用形成分子级别的"胶囊",用作生长纳米颗粒的模板[1].可溶性淀粉主要是直链淀粉,是由多个葡萄糖单元构成的含有丰富羟基的高分子,同时具有疏水性和亲水性[2].  相似文献   

16.
Chitosan nanocomposites were prepared from chitosan and gold nanoparticles (AuNPs) or silver nanoparticles (AgNPs) of ~5 nm size. Transmission electron microscopy (TEM) showed the NPs in chitosan did not aggregate until higher concentrations (120-240 ppm). Atomic force microscopy (AFM) demonstrated that the nanocrystalline domains on chitosan surface were more evident upon addition of AuNPs (60 ppm) or AgNPs (120 ppm). Both nanocomposites showed greater elastic modulus, higher glass transition temperature (T(g)) and better cell proliferation than the pristine chitosan. Additionally, chitosan-Ag nanocomposites had antibacterial ability against Staphylococcus aureus. The potential of chitosan-Au nanocomposites as hemostatic wound dressings was evaluated in animal (rat) studies. Chitosan-Au was found to promote the repair of skin wound and hemostasis of severed hepatic portal vein. This study indicated that a small amount of NPs could induce significant changes in the physicochemical properties of chitosan, which may increase its biocompatibility and potential in wound management.  相似文献   

17.
The network polysilanes (polysilynes) [RMe2SiCH2CH2Si]n, [R=Ph ( 1 ), 2‐Furyl ( 2 )] have been synthesized by room temperature reaction of the corresponding organotrichlorosilane with Na dispersion in tetrahydrofuran (THF) medium. The method allows the formation of high molecular weight polymers [Mw/PDI = 10,504/2.2 ( 1 ), 9176/1.5 ( 2 )] in improved yields than those obtained from classical Wurtz coupling reaction (Na, toluene, 110 °C). These polymers act as reducing agents for Ag(I) and Au(III) ions to afford stable metal nanoparticles of 4–8 nm size domains in toluene medium. The corresponding polymer–silver nanocomposites, 1a and 2a , are fluorescent in the green light region (λmax = ~ 530 nm) due to the formation of silver nanoclusters (AgNCs) along with the nanoparticles (AgNPs). A simple chemical approach has been developed to modulate the plasmonic and emission intensities of the nanocomposite 1a by reacting with varying concentrations (10?12 to 10?7M) of HgI2 in toluene. The method allows enhancement of the fluorescence intensity associated with AgNCs. The results are explained by invoking coupling between the energies of surface plasmon resonance and the nanocluster electronic transition. The polymer–gold nanocomposites, 1b and 2b , are non‐fluorescent and the plasmonic resonance at 530 nm associated with AuNPs is found to be insensitive to Hg(II) ions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Structure and dielectric relaxations of antibacterial sulfonated polystyrene (SPS) and silver nanocomposites (SPS/Ag) were investigated via broadband dielectric spectroscopy, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, differential scanning calorimetry, scanning electron microscopy, and wide‐angle X‐ray diffraction. SPS/Ag nanocomposites were prepared from SPS containing 2, 4, and 7 mol% of acid contents, followed by ion exchange and a reduction process. Silver nanoparticles were formed in the structural cavities of SPS films. The single glass transition temperature of the SPS copolymers was observed and increased with increasing acid contents and more enhanced with embedded silver nanoparticles because of the restriction of the polymer chain movement. The particle size of embedded silver nanoparticles was about 10 nm and well dispersed in SPS matrices. Four dielectric relaxations were observed above the glass transition temperature, and they were attributed to the fast segmental relaxation, the slow‐hindered segmental relaxation, relaxations associated with Maxwell–Wagner–Sillars interfacial polarization and electrode polarization. Weak local relaxations were observed due to the motion of sulfonated phenyl groups. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A procedure was developed for the synthesis of gold and silver nanoparticles in the presence of polyols like ethylene glycol, diethylene glycol, triethylene glycol, and 1,2-propylene glycol. Spectral characteristics of the obtained nanocomposites were mesured and kinetics of the formation of the colloidal phase was studied. The influence of the polyol nature and concentration on the photoinitiated formation of silver and gold nanoparticles was studied. The 1,2-propylene glycol is shown to exhibit maximal stabilizing effect.  相似文献   

20.
The application of microorganisms for the synthesis of metal nanoparticles as an eco-friendly and promising approach is ongoing. In this paper, an attempt has been made to investigate the capability of Leishmania sp. for synthesis of metal nanoparticles from aqueous silver and gold ions. The samples were analyzed by a UV?CVis spectroscopy and the results showed the absorbance peak values at 420 and 540?nm, respectively, for the surface plasmon resonance of silver and gold nanoparticles. The surface morphology of the nanoparticles in solution was visualized by atomic force microscope and scanning electron microscope images, which showed the production of metallic nanoparticles by this protozoan. Fourier transform infrared spectroscopy analyses confirmed the presence of different bands of protein as capping and stabilizing agent on the nanoparticles surfaces. The synthesized silver and gold nanoparticles were with dimensions ranging between 10 and 100?nm for silver and 50?C100?nm for gold. These results of the present study have demonstrated the efficiency of this protozoan for synthesis of nanoparticles, by offering the merits of environmentally friendly, amenability, and time saving for large-scale production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号