首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
The purpose of this study was to assess the impact a community‐based service learning program might have on preservice teachers' science instruction during student teaching. Designed to promote science inquiry, preservice teachers learned how to offer students more opportunities to develop their own ways of thinking through utilization of an afterschool science program that provided them extended opportunities to practice their science teaching skills. Three preservice teachers were followed to examine and evaluate the transfer of this experience to their student teaching classroom. Investigation methods included field observations and semi‐structured, individual interviews. Findings indicate that preservice teachers expanded their ideas of science inquiry instruction to include multiple modes of formative assessment, while also struggling with the desire to give students the correct answer. While the participants' experiences are few in number, the potential of afterschool teaching experience serving as an effective learning experience in preservice teacher preparation is significant. With the constraints of high‐stakes testing, community‐based service learning teaching opportunities for elementary and middle‐school preservice teachers can support both the development and refinement of inquiry instruction skills.  相似文献   

2.
The purpose of this phenomenological study was to explore how science teachers who persisted in urban schools interpreted and responded to the unique features of urban educational contexts. With 17 alumni who taught in metropolitan areas across seven states, the Science Educators for Urban Schools (SEUS) program provided a research setting that offered a unique view of science teachers’ development of knowledge of urban education contexts. Data sources included narratives of teaching experiences from interviews and open‐ended survey items. Findings were interpreted in light of context knowledge for urban educational settings. Findings indicated that science teaching in urban contexts was impacted by the education policy context, notably through accountability policies that narrowed and marginalized science instruction; community context, evident in teacher efforts to make science more relevant to students; and school contexts, notability their ability to creatively adjust for resource deficiencies and continue their own professional growth. Participants utilized this context knowledge to transform student opportunities to learn science. The study suggests that future science education research and teacher preparation efforts would benefit from further attention to the unique elements of urban contexts, specifically the out of classroom contexts that shape science teaching and learning.  相似文献   

3.
Science is a dynamic discipline, representative of the nature of science. Yet, young science students continue to think everything is already discovered. In this study, we examine why students are not actively doing science. From professional development to student engagement, how are classrooms and students changing as we increase teachers' content knowledge? Teaching practices modeled in professional development can change what occurs in the classroom. Our study was designed to probe differences in two different types of professional development programs both focused on content knowledge. We found that what is modeled by the professional developers has a profound effect on the direction of the classroom. This matched controlled study found that teachers reflect the teaching practice modeled by professional developers through their individual classroom teaching practices. A significant difference was found in cognitive activities and questioning skills between teachers in a professional development program modeling authentic inquiry versus the teachers in a professional development modeling simulated inquiry. While both groups increased the amount of overall inquiry used in the classroom, students whose teachers were in authentic inquiry professional development were engaged in higher cognitive activities and questioning skills. If students are engaged in dynamic classrooms, searching for answers to students' questions, perhaps they will understand that science is a dynamic discipline.  相似文献   

4.
Three mathematics and science educators reexamine and reflect on their teaching within the context of the American Association for the Advancement of Sciences (AAAS) and National Council of Mathematics' call to make math and science education accessible to all. The paper highlights the importance of teachers reflecting on their teaching practices in order to create opportunities for their students especially those in the urban setting. The educators argue that teachers' reflection on their teaching can cause them to recognize and validate their students' ways of knowing as they identify the students' hidden/concealed abilities that are often masked by their behaviors. The educators discuss their experiences and highlight the lessons that they learned about ways to prepare teachers to successfully teach math and science students in urban settings. Culturally responsive pedagogy and cultural competency are critical skills that teachers need to develop in order to teach all children, especially those in the math and science classroom in the urban setting.  相似文献   

5.
Project‐based science (PBS) aligns with national standards that assert children should learn science by actively engaging in the practices of science. Understanding and implementing PBS requires a shift in teaching practices away from one that covers primarily content to one that prompts children to conduct investigations. A common challenge to PBS implementation is a misunderstanding of the elements of PBS. Identification of these misunderstandings as well as implementation challenges could inform professional development. This case study examined 24 teachers’ understanding and implementation of PBS during participation in a consecutive three‐year, comprehensive professional development program. Results provide insight as to the process they followed in the transition to implementing PBS. Measures included classroom observations, reflective interviews, and attitudinal surveys. Results showed that teachers developed the knowledge, confidence, and understanding to implement PBS but in most cases it took at least two to three years for positive results to become evident. Teachers struggled to develop adequate driving questions that provided project‐focused lessons. Other obstacles included teacher resistance to student‐directed instruction, confusing inquiry‐based instruction with hands‐on activities, and inability to motivate students to work in collaborative teams. While challenging, over time the teachers developed the knowledge, desire, and skills to implement PBS.  相似文献   

6.
The study examined relationships among key domains of science instruction with English language learning (ELL) students based on teachers' perceptions of their classroom practices (i.e., what they think they do) and actual classroom practices (i.e., what they are observed doing). The four domains under investigation included: (1) teachers' knowledge of science content; (2) teaching practices to support scientific understanding; (3) teaching practices to support scientific inquiry; and (4) teaching practices to support English language development during science instruction. The study involved 38 third‐grade teachers participating in the first‐year implementation of a professional development intervention aimed at improving science and literacy achievement of ELL students in urban elementary schools. Based on teachers' self‐reports, practices for understanding were related to practices for inquiry and practices for English language development. Based on classroom observations in the fall and spring, practices for understanding were related to practices for inquiry, practices for English language development, and teacher knowledge of science content. However, we found a weak to non‐existent relationship between teachers' self‐reports and observations of their practices.  相似文献   

7.
Creating scientifically literate students is a common goal among educational stakeholders. An understanding of nature of science is an important component of scientific literacy in K‐12 science education. Q methodology was used to investigate the opinions of preservice and in‐service teachers on how they intend to teach or currently teach science. Q methodology is a measurement tool designed to capture personal beliefs. Participants included 40 preservice and in‐service elementary and secondary science teachers who sorted 40 self‐referential statements regarding science instruction. The results identified three epistemologies toward teaching science: A Changing World, My Beliefs, and Tried and True. Participants with the A Changing World epistemology believe evidence is reliable, scientific knowledge is generated in multiple ways, and science changes in light of new evidence. The My Beliefs epistemology reflects that scientific knowledge is subject to change due to embedded bias, science is affected by culture and religion, and evolution should not be taught in the classroom. The Tried and True epistemology views a scientific method as an exact method to prove science, believes experiments are crucial for scientific discoveries, absolute truth exists in scientific knowledge, and society and cultural factors can be eliminated from investigations. Implications for preservice teacher education programs and in‐service teacher professional development are addressed.  相似文献   

8.
A model of a 1-year, graduate level content-specific teacher preparation program is described that integrates learning about and teaching with electronic technologies as an integral component in teaching and learning science and mathematics, grades 3–12. The development of an integrated knowledge structure of science/math, technology, and teaching science/math with technology requires experiences focused on an integration of three important components: planning during the preactive stage, monitoring and regulating during the interactive stage, and assessing and revising in the postactive stage of teaching. The program model features an integration of experiences in incorporating technology in teaching science and math that specifically relate or interconnect their thinking in these three stages of instruction.  相似文献   

9.
The GTECH project, funded through a grant from the GTE Foundation, prepared school teams of science, mathematics and technology teachers and an administrator to set goals for their local schools regarding implementation of electronic technology and integration of content across curricular areas. A variety of teacher‐centered staff development strategies were used to enable participants to achieve local school objectives, model and encourage active learning environments involving technology, develop integrated curriculum and provide training to their peers. GTECH staff provided workshops and summer institutes based on teacher feedback and classroom observations. Data from the Stages of Concerns Questionnaire assisted the staff in designing effective staff development activities. Over the 2‐year period, teacher teams developed and implemented integrated instructional materials and developed skills in using HyperStudio, PowerPoint, telecommunications applications, and instructional resources from the Internet. They also linked instruction to new state and national standards in science, mathematics, and technology. GTECH teachers reported that their students have expanded their knowledge and skill in problem solving, teamwork, technical expertise, and creativity.  相似文献   

10.
11.
The purpose of the study was to assess elementary students' science process skills, content knowledge, and concept knowledge after one year of participation in an elementary Science, Technology, Engineering, and Mathematics (STEM) program. This study documented the effects of the combination of intensive professional development and the use of inquiry‐based science instruction in the elementary classroom, including the benefits of using rigorous science curriculum with general education students. The results of the study revealed a statistically significant gain in science process skills, science concepts, and science‐content knowledge by general education students in the experimental group when compared with students in the comparison group. Moreover, teacher participation in the STEM program had a statistically significant impact on students' variability in posttest scores. These interim student performance data support the implementation of rigorous differentiated science curriculum focused on improving science concept, content knowledge, and process skills.  相似文献   

12.
Effective professional development that influences teachers’ classroom practices starts with what teachers know, understand, and do in their classroom. The Next Generation Science Standards (NGSS) challenge teachers to make changes to their classroom; to help teachers make these changes, it is necessary to know what they are doing in their classrooms just prior to NGSS adoption. An online survey was distributed to high school chemistry teachers to understand their teaching practices before NGSS was adopted as state standards. This article presents the findings of the survey in terms of the chemistry content, science and engineering practices, and engineering content currently taught in chemistry. Gaps in the current teaching practices as they relate to the standards at the time of the study and NGSS are discussed, which show a challenge for the transformation of science education, which the implementation of NGSS hopes to achieve. Implications for professional development are included.  相似文献   

13.
Commissions, studies, and reports continue to call for inquiry‐based learning approaches in science and math that challenge students to think critically and deeply. While working with a group of middle school science and math teachers, we conducted more than 100 classroom observations, assessing several attributes of inquiry‐based instruction. We sorted the observations into two groups based on whether students both explored underlying concepts before receiving explanations and contributed to the explanations. We found that in both math and science classrooms, when teachers had students both explore concepts before explanations and contribute to the explanations, a higher percent of time was spent on exploration and students were more frequently involved at a higher cognitive level. Further, we found a high positive correlation between the percent of time spent exploring concepts and the cognitive level of the students, and a negative correlation between the percent of time spent explaining concepts and the cognitive level. When we better understand how teachers who are successful in challenging students in higher‐order thinking spend their time relative to various components of inquiry‐based instruction, then we are better able to develop professional development experiences that help teachers transition to more desired instructional patterns.  相似文献   

14.
The purpose of this study was to further the understanding of how preservice teachers construct teacher knowledge and pedagogical content knowledge of elementary mathematics and science in a school‐based setting and the extent of knowledge construction. Evidence of knowledge construction (its acquisition, its dimensions, and the social context) was collected through the use of a qualitative methodology. The methods course was content‐specific with instruction in elementary mathematics and science. Learning experiences were based on national standards with a constructivist instructional approach and immediate access to field experiences. Analysis and synthesis of data revealed an extensive acquisition of teacher knowledge and pedagogical content knowledge. Learning venues were discovered to be the conduits of learning in a situated learning context. As in this study, content‐specific, school‐based experiences may afford preservice teachers greater opportunities to focus on content and instructional strategies at deeper levels; to address anxieties typically associated with the teaching of elementary mathematics and science; and to become more confident and competent teachers. Gains in positive attitudes and confidence in teaching mathematics and science were identified as direct results of this experience.  相似文献   

15.
Integration of content in core disciplines is viewed as an important curricular component in promoting scientific literacy. This study characterized the current practices of a group of elementary teachers relative to their development of interdisciplinary links between science, mathematics, and literacy. A qualitative analysis of survey data showed that there were substantial differences in the use of a well‐developed process for integrating instruction. Teachers also lacked a conceptual connection to integration, showed contradictions in the importance placed on hands‐on experiences, used measurement as the primary interdisciplinary connection between mathematics and science, and did not use instructional strategies designed specifically for nonfiction/expository text. The findings underscore the need for professional development that assists teachers in changing their conceptual perspectives to integration while also building pedagogical knowledge related to integration of science, mathematics, and literacy.  相似文献   

16.
The purpose of this study is to gain insight into the experiences that nationally award‐winning, exemplary science teachers have had over their career and examine the alignment of their responses with calls for K‐12 science education reform from a selection of prominent commissioned government reports since 1980. From an assessment of the alignment of exemplary teachers, calls for reform have had a limited effect and highlight the weakness of using national reports as a wide‐scale, nationalized approach to science education reform. Findings are focused on seven different areas of teacher development: classroom issues, teaching scientific inquiry, use of technology, preservice experiences, professional development of in‐service teachers, vertical articulation, and science education reform over time. Among other issues, the teachers indicated one of the biggest barriers to inquiry teaching is the pressure to conform to high‐stakes testing and the lack of examples of inquiry teaching during teacher education experiences.  相似文献   

17.
18.
Despite agreement among teacher educators, scholars, and policymakers on the importance of teachers’ subject matter knowledge (SMK), existing models provide limited information about the nature of this foundational component of teacher knowledge. The common assumption is that teachers need to know more about the science subject matter than their students are expected to learn, but what and how much more is underspecified. In order to more characterize science teachers’ SMK, we present the science knowledge for teaching (SKT) model, which has been adapted from the mathematics education literature to apply to science education. The SKT model includes three domains: core content knowledge, specialized content knowledge, and linked content knowledge. We used this model to explore the SMK new secondary chemistry teachers in South Africa and the United States drew on when they explained the conservation of mass and analyzed a related teaching scenario, two important tasks of teaching. Findings indicated these new teachers drew on knowledge from all three SKT domains in order to engage in these tasks of teaching. This result suggests the potential of the SKT model to characterize the nature of science teachers’ SMK and thereby better inform teacher preparation and professional development programs.  相似文献   

19.
Despite historical national efforts to improve elementary science education, science instruction continues to be marginalized, varying by state. This study was designed to address the ongoing challenge of educating elementary preservice teachers (PSTs) to teach science. Elementary PSTs are one of the science education community's major links to schools and science education reform. However, they often lack a strong background in science, knowledge of effective science teaching strategies, and consequently have low confidence and self‐efficacy. This investigation explored the initial learning of elementary PSTs using an interdisciplinary model of a scientific classroom discourse community during a science methods course. Findings post‐methods course suggested that the PSTs gained confidence in how to teach inquiry‐based elementary science and recognized inquiry‐based science as an effective means for engaging student learning. Additionally, PSTs embraced the interdisciplinary model as one that benefits students' learning and effectively uses limited time in a school day.  相似文献   

20.
The goal of this article is to inform professional understanding regarding preservice science teachers’ knowledge of engineering and the engineering design process. Originating as a conceptual study of the appropriateness of “knowledge as design” as a framework for conducting science teacher education to support learning related to engineering design, the findings are informed by an ongoing research project. Perkins’s theory encapsulates knowledge as design within four complementary components of the nature of design. When using the structure of Perkins’s theory as a framework for analysis of data gathered from preservice teachers conducting engineering activities within an instructional methods course for secondary science, a concurrence between teacher knowledge development and the theory emerged. Initially, the individuals, who were participants in the research, were unfamiliar with engineering as a component of science teaching and expressed a lack of knowledge of engineering. The emergence of connections between Perkins’s theory of knowledge as design and knowledge development for teaching were found when examining preservice teachers’ development of creative and systematic thinking skills within the context of engineering design activities as well as examination of their knowledge of the application of science to problem‐solving situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号