首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The visualization of ultrafast isomerization of deuterated acetylene dication (C(2)D(2)(2+)) is demonstrated by time-resolved Coulomb explosion imaging with sub-10 fs intense laser pulses (9 fs, 0.13 PW cm(-2), 800 nm). The Coulomb explosion imaging monitoring the three-body explosion process, C(2)D(2)(3+)→ D(+) + C(+) + CD(+), as a function of the delay between the pump and probe pulses revealed that the migration of a deuterium atom proceeds in a recurrent manner; One of the deuterium atoms first shifts from one carbon site to the other in a short timescale (~90 fs), and then migrates back to the original carbon site by 280 fs, in competition with the molecular dissociation. Correlated motion of the two deuterium atoms associated with the hydrogen migration and structural deformation to non-planar geometry are identified by the time-resolved four-body Coulomb explosion imaging, C(2)D(2)(4+)→ D(+) + C(+) + C(+) + D(+).  相似文献   

2.
KeV atomic particles traversing biological matter are subject to charge exchange and screening effects which dynamically change this particle's effective charge. The understanding of the collision cascade along the track thus requires a detailed knowledge of the interaction dynamics of radiobiologically relevant molecules, such as DNA building blocks or water, not only with ionic but also with neutral species. We have studied collisions of keV H(+), He(+), and C(+) ions and H(0), He(0), and C(0) atoms with the DNA base adenine by means of high resolution time-of-flight spectrometry. For H(0) and H(+) we find qualitatively very similar fragmentation patterns, while for carbon, strong differences are observed when comparing C(0) and C(+) impact. For collisions with He(0) and He(+) projectiles, a pronounced delayed fragmentation channel is observed, which has not been reported before.  相似文献   

3.
Yamamoto K  Motomizu S 《Talanta》1989,36(5):561-565
The dichlorocuprate(I) anion CuCl(-)(2) can be extracted as its ion-associates Q(+).CuCl(-)(2) with quaternary ammonium cations (Q(+)) into chloroform. The extraction constants K(ex) have been determined, and the log K(ex) values found for the various counter-ions used are 1.93 for (C(3)H(7))(4)N(+), 4.10 for (C(4)H(9))(4)N(+), 6.57 for (C(5)H(11))(4)N(+), 1.57 for C(8)H(17)N(+) (CH(3))(3), 2.83 for C(10)H(21)N(+) (CH(3))(3) 4.12 for C(12)H(25)N(+) (CH(3))(3) and 5.21 for C(14)H(29)N(+)(CH(3))(3), respectively. A linear relationship was found between log K(ex) and the total number of carbon atoms in Q(+); from the slope of the line, the contribution of a methylene group to log K(ex) was calculated to be 0.59. The extractability with alkyltrimethylammonium cations was larger than that with symmetrical tetra-alkylammonium cations and the difference in log K(ex) for two cations (one of each type) with the same number of carbon atoms was about 0.4. From the extraction constants obtained, the extractability of CuCl(-)(2) was found to lie between that of ReO(-)(4) and ClO(-)(4).  相似文献   

4.
13C NMR differences of chemical shifts (delta(X) - delta(H)) of allyl carbon atoms in a series of trans-(1-(diphenylphosphino)-2-(dimethylamino)ethane)(eta(3)-1-arylallyl)palladium tetrafluoroborates, X ranging from NO(2) to OMe, correlate very well with sigma Hammett constants for C-1 and with sigma(+) for C-3, this carbon atom being in a trans relationship with the positively charged nitrogen atom.  相似文献   

5.
Activated carbon‐supported CuCl2 (CuCl2/AC) is a heterogeneous catalyst for the liquid‐phase selective allylic oxidation of (+)‐3‐carene with tert‐butyl hydroperoxide (TBHP) and O2 to produce (?)‐3‐carene‐2,5‐dione. The possible reaction mechanism and the effects of different factors on the allylic oxidation were investigated. The optimal conditions are as follows: reaction temperature, 45 °C; molar ratio of CuCl2 to (+)‐3‐carene, 1%; volume ratio of (+)‐3‐carene to TBHP, 1:3; and reaction time, 12 h. Under the optimal conditions, the conversion of (+)‐3‐carene reached 100%, whereas the selectivity for (?)‐3‐carene‐2,5‐dione reached 78%. The CuCl2/AC catalyst was characterized via X‐ray diffraction, and the chemical structure of the target compound was identified via infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, mass spectrometry, and optical analysis.  相似文献   

6.
In an electron impact dissociative ionization experiment on C(2)H(5)OH, the formation of molecular ions requiring rearrangement of H atoms has been studied using a momentum spectrometer. H(3) (+), H(2) (+), HOH(+), and H(2)OH(+) observed in the experiment are molecular ions of this type. By comparing the mass spectrum of C(2)H(5)OH with that of its isotopomer C(2)H(5)OD, we determine the proportions of H-bond rearrangements involving carbon and oxygen sites. We find that the formation of H(3) (+) due to the breaking of the O-H bond and rearrangement of the H atoms on the CH(2) site is about 2.5 times as likely as its formation involving atoms from the CH(3) site alone. No such difference is seen in case of the H(2) (+) ion. The role of the O-H bond in formation of all observed ions has been assessed. Kinetic energy distributions of the molecular ions suggest that two or three electronically excited states contribute to their formation.  相似文献   

7.
High resolution kinetic energy release spectra were obtained for C(+) and O(+) from CO multiphoton ionization followed by dissociation of CO(+). The excitation was through the CO (B (1)Sigma(+)) state via resonant two-photon excitation around 230 nm. A total of 5 and 6 photons are found to contribute to the production of carbon and oxygen cations. DC slice and Megapixel ion imaging techniques were used to acquire high quality images. Major features in both O(+) and C(+) spectra are assigned to the dissociation of some specific vibrational levels of CO(+)(X (2)Sigma(+)). The angular distributions of C(+) and O(+) are very distinct and those of various features of C(+) are also different. A dramatic change of the angular distribution of C(+) from dissociation of CO(+)(X (2)Sigma(+), nu(+) = 1) is attributed to an accidental one-photon resonance between CO(+)(X (2)Sigma(+), nu(+) = 1) and CO(+)(B (2)Sigma(+), nu(+) = 0) and explained well by a theoretical model. Both kinetic energy release and angular distributions were used to reveal the underlying dynamics.  相似文献   

8.
The reaction C + H3+ --> CH(+) + H2 is frequently used in models of dense interstellar cloud chemistry with the assumption that it is fast, i.e. there are no potential energy barriers inhibiting it. Ab initio molecular orbital study of the triplet CH3+ potential energy surface (triplet because the reactant carbon atom is a ground state triplet) supports this hypothesis. The reaction product is 3 pi CH+; the reaction is to exothermic even though the product is not in its electronic ground state. No path has been found on the potential energy surface for C + H3+ --> CH2(+) + H reaction.  相似文献   

9.
Gaseous CF(3)(+) interchanges F(+) for O with simple carbonyl compounds. CF(3)(+) reacts with propionaldehyde in the gas phase to produce (CH(3))(2)CF(+) via two competing pathways. Starting with 1-(13)C-propionaldehyde, the major pathway (80%) produces (CH(3))(2)CF(+) with the carbon label in one of the methyl groups. The minor pathway (20%) produces (CH(3))(2)CF(+) with the carbon label in the central position. The relative proportions of these two pathways are measured by (19)F NMR analysis of the neutral CH(3)CF=CH(2) produced by deprotonation of (CH(3))(2)CF(+) at <10(-)(3) Torr in an electron bombardment flow (EBFlow) reactor. Formation of alkene in which carbon is directly bonded to fluorine means that (in the minor product, at least) an F(+) for O transposition occurs via adduct formation followed by 1,3-atom transfer and then isomerization of CH(3)CH(2)CHF(+) to the more stable (CH(3))(2)CF(+). Use of CF(4) as a chemical ionization (CI) reagent gas leads to CF(3)(+) adduct ions for a variety of ketones, in addition to isoelectronic transposition of F(+) for O. Metastable ion decompositions of the adduct ions yield the metathesis products. Decompositions of fluorocycloalkyl cations formed in this manner give evidence for the same kinds of rearrangements as take place in CH(3)CH(2)CHF(+). Density functional calculations confirm that F(+) for O metathesis takes place via addition of CF(3)(+) to the carbonyl oxygen followed by transposition via a four-member cyclic transition state. A computational survey of the effects of different substituents in a series of aldehydes and acyclic ketones reveals no systematic variation of the energy of the transition state as a function of thermochemistry, but the Hammond postulate does appear to be obeyed in terms of progress along the reaction coordinate. Bond lengths corresponding to the central barrier correlate with overall thermochemistry of the F(+) for O interchange, but in a sense opposite to what might have been expected: the transition state becomes more product-like as the metathesis becomes increasingly exothermic. This reversal of the naive interpretation of the Hammond postulate is accounted for by the relative positions of the potential energy wells that precede and follow the central barrier.  相似文献   

10.
The stereocontrolled synthesis of the C(17)--C(28) fragment 3 of didemnaketal B was accomplished in 21 steps from the natural (R)-(+)-pulegone and (S)-(--)-citronellal. The key steps involved diastereoselective construction of two chiral carbon centers through the intramolecular chiral induction and uncommon Julia olefination of ketone forming the E-trisubstituted C(22)--C(23) double bound.  相似文献   

11.
The conformations of trimethyl phosphite (TMPhite) were studied using matrix isolation infrared spectroscopy. TMPhite was trapped in a nitrogen matrix using an effusive source maintained at two different temperatures (298 and 410 K) and a supersonic jet source. The experimental studies were supported by ab initio computations performed at the B3LYP/6-31++G** level. Computations identified four minima for TMPhite, corresponding to conformers with C(1)(TG(±)G(±)), C(s)(TG(+)G(-)), C(1)(G(±)TT), and C(3)(G(±)G(±)G(±)) structures, given in order of increasing energy. Computations of the transition state structures connecting the C(s)(TG(+)G(-)) and C(1)(G(±)TT) conformers to the global minimum C(1)(TG(±)G(±)) structure were also carried out. The barriers for the interconversion of C(s)(TG(+)G(-)) and C(1)(G(±)TT) to the ground state C(1)(TG(±)G(±)) conformer were 0.2 and 0.6 kcal/mol, respectively. Comparison of conformational preferences of TMPhite with the related carbon compound, trimethoxymethane, and the organic phosphate, trimethyl phosphate, was also made using natural bond orbital analysis.  相似文献   

12.
The degradation of tetracycline (1) by ozone in aqueous solution was investigated. High performance liquid chromatography (HPLC), UV-visible spectroscopy (UV-Vis), and total organic carbon (TOC) analyses revealed that although tetracycline was quickly consumed under this oxidative condition, it did not mineralize at all. Continuous monitoring by electrospray ionization mass spectrometry in the positive ion mode, ESI(+)-MS, revealed that tetracycline (1), detected in its protonated form ([1 + H]+) of m/z 445, reacted to yield almost exclusively two unprecedented oxidation products (2 and 3) via a net insertion of one and two oxygen atoms, respectively. Compound 2, suggested to be formed via an initial 1,3-dipolar cycloaddition of ozone at the C11a-C12 double-bond of 1, and Compound 3, proposed to be produced via a subsequent ozone attack at the C2-C3 double-bond of 2, were detected in their protonated forms in the ESI(+)-MS, i.e., [2 + H]+ of m/z 461 and [3 + H]+ of m/z 477, and were further characterized by ESI(+)-MS(n). LC-APCI(+)-MS (liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry in the positive ion mode) experiments corroborated the results.  相似文献   

13.
All three stereoisomers of the hexacyclic 3a,3a'-bispyrrolidino[2,3-b]indoline moiety found in complex indole alkaloids can be prepared, as illustrated by total syntheses of meso-chimonanthine (1) and (+)-chimonanthine (2). A rare example of high diastereoselectivity arising from the combination of a prostereogenic enolate with a chiral electrophile containing a sp(3) carbon atom is the key feature of the asymmetric synthesis of the C(2) stereoisomer.  相似文献   

14.
Lin WC  Liu CP  Kuo CH  Chang HY  Chang CJ  Hsieh TH  Lee SH  You YW  Kao WL  Yen GJ  Huang CC  Shyue JJ 《The Analyst》2011,136(5):941-946
Cluster ion sputtering has been proven to be an effective technique for depth profiling of organic materials. In particular, C(60)(+) ion beams are widely used to profile soft matter. The limitation of carbon deposition associated with C(60)(+) sputtering can be alleviated by concurrently using a low-energy Ar(+) beam. In this work, the role of this auxiliary atomic ion beam was examined by using an apparatus that could analyze the sputtered materials and the remaining target simultaneously using secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectrometry (XPS), respectively. It was found that the auxiliary 0.2 kV Ar(+) stream was capable of slowly removing the carbon deposition and suppresses the carbon from implantation. As a result, a more steady sputtering condition was achieved more quickly with co-sputtering than by using C(60)(+) alone. Additionally, the Ar(+) beam was found to interfere with the C(60)(+) beam and may lower the overall sputtering rate and secondary ion intensity in some cases. Therefore, the current of this auxiliary ion beam needs to be carefully optimized for successful depth profiling.  相似文献   

15.
《Tetrahedron: Asymmetry》2001,12(20):2861-2866
We have designed a series of amino-phosphite and phosphite-phosphoroamidite ligands 16 derived from inexpensive d-(+)-xylose. These ligands were screened in the Cu-catalyzed asymmetric 1,4-addition of diethylzinc to cyclohexenone. High reaction rates (TOF >1200 h−1) and moderate enantioselectivities (up to 63% e.e.) were obtained. The results showed that the configuration of the stereogenic carbon atom C(3) at the ligand backbone and the different substituents at the amino group had remarkable effects on the activity and enantioselectivity.  相似文献   

16.
A concise second-generation total synthesis of the fungal-derived alkaloid (+)-gliocladin C (11) in 10 steps and 11% overall yield from isatin is reported. In addition, the epipolythiodioxopiperazine (ETP) natural product (+)-gliocladine C (6) has been prepared in six steps and 29% yield from the di-(tert-butoxycarbonyl) precursor of 11. The total synthesis of 6 constitutes the first total synthesis of an ETP natural product containing a hydroxyl substituent adjacent to a quaternary carbon stereocenter in the pyrrolidine ring.  相似文献   

17.
The previously unknown arsenic carbide (AsC) free radical has been identified in the gas phase through a combination of laser-induced fluorescence (LIF), single vibronic level emission, and stimulated emission pumping (SEP) spectroscopy in a supersonic expansion. The As(12)C and As(13)C isotopologues have been detected as products of an electric discharge in mixtures of arsine (AsH(3)) and carbon dioxide ((12)CO(2) or (13)CO(2)) in high pressure argon. The B (2)Σ(+)-X (2)Σ(+) band system was recorded by LIF spectroscopy and emission transitions from the B state down to the ground state and to the low-lying A (2)Π(i) state were observed. High resolution studies of the B-X 0-0 band by LIF and the B-A 0-0 band by SEP spectroscopy enabled a determination of the molecular structures in the three states. Although CN, CP, and AsC have similar X (2)Σ(+) and A (2)Π(i) states, the B (2)Σ(+) state molecular orbital configuration of CP and AsC differs from that of the CN free radical.  相似文献   

18.
Explicitly correlated coupled cluster theory at the CCSD(T)-F12x level (T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys.127, 221106, 2007) has been employed to study structures and vibrations of complexes of type c-C(3)H(3)(+)·L and H(2)C(3)H(+)·L (L = Ne, Ar, N(2), CO(2), and O(2)). Both cations have different binding sites, allowing for the formation of weak to moderately strong hydrogen bonds as well as "C-bound" or "π-bound" structures. In contrast to previous expectations, the energetically most favourable structures of all H(2)C(3)H(+)·L complexes investigated are "C-bound", with the ligand bound to the methylenic carbon atom. The theoretical predictions enable a more detailed interpretation of infrared photodissociation (IRPD) spectra than was possible hitherto. In particular, the bands observed in the range 3238-3245 cm(-1) (D. Roth and O. Dopfer, Phys. Chem. Chem. Phys.4, 4855, 2002) are assigned to essentially free acetylenic CH stretching vibrations of the propargyl cation in "C-bound" H(2)C(3)H(+)·L complexes.  相似文献   

19.
Ionization and fragmentation of solid C(60) dispersed on a silicon plate are investigated by femtosecond laser ablation. Bimodal mass distribution with large fragment ions C(60-2n) (+) (0< or =n< or =11) and small fragment ions C(n) (+) (13< or =n< or =28), formation of dimer ion (C(60))(2) (+), and delayed ionization of C(60) have been observed as reported in gas phase experiments with nanosecond laser excitation. Metastable dissociation of small fragment ions C(n) (+) has been observed for the first time, which suggests different structures of fragment ions compared with those of well-studied carbon cluster ions. From these observations, strong coupling of laser energy to electronic degrees of freedom of solid C(60) has been revealed for femtosecond laser ablation as compared with excitation in the gas phase.  相似文献   

20.
High-resolution pulsed-field-ionization zero-kinetic-energy photoelectron spectra of CH(3)D and CD(3)H have been recorded at rotational resolution from the adiabatic ionization energy up to 600 cm(-1) of internal energy of the respective cations. The spectra are characterized by the effects of a large-amplitude pseudorotational motion exchanging the equivalent nuclei in each molecule. With increasing internal energy, a transition from the tunneling regime with splittings of the order of 1-10 cm(-1) to the free pseudorotation regime is observed. A theoretical model that treats the simultaneous rotational and pseudorotational motions and incorporates the effects of the geometric phase has been developed. The model provides the appropriate rovibronic symmetries in the C(3v)(M) molecular symmetry group and reaches a near-quantitative agreement with the experimental data. The complete group-theoretical analysis of the rovibronic problem is also given. The analysis of the spectra has revealed the existence of two different isomers for both CH(3)D(+) and CD(3)H(+), which differ in the bond length between the carbon atom and the unique ligand atom. All isomers are subject to a fast pseudorotational motion between three equivalent minima with a period of 3-5 ps in CH(3)D(+) and 18-28 ps in CD(3)H(+). The analysis has also provided the ordering of the tunneling sublevels for each isomer, which enables the location of the twofold conical intersections on the potential energy surface that could not be determined from experiments on CH(4) (+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号