首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) can form nonaqueous microemulsions with benzene by the aid of nonionic surfactant TX-100. The effect of water on ionic liquid-in-oil (IL/O) microemulsions was studied, and it was shown that the addition of small amount of water to the IL microemulsion contributed to the stability of microemulsion and thus increased the amount of solubilized bmimBF4 in the microemulsion. The conductivity measurements also showed that the attractive interactions between IL microdroplets were weakened, that is, the IL/O microemulsion becomes more stable in the present of some water. Fourier transform IR was carried out to analyze the states of the added water, and the result showed that these water molecules mainly behaved as bound water and trapped water, indicating that the water molecules are located in the palisade layers of the IL/O microemulsion. Furthermore, 1H NMR and 19F NMR spectra suggested that the added water molecules built the hydrogen binding network of imidazolium cations and H2O, BF4- anion and H2O, and at the same time the electronegative oxygen atoms of the oxyethylene units of TX-100 and water in the palisade layers, which made the palisade layers more firm and thus increased the stability of the microemulsion. The study can help in further understanding the formation mechanism of microemulsions. In addition, the characteristic solubilization behavior of the added water can provide an aqueous interface film for hydrolysis reactions and therefore may be used as an ideal medium to prepare porous or hollow nanomaterials.  相似文献   

2.
The solubilization and phase equilibria of w/o microemulsions have been shown to be dependent on two phenomenological parameters, namely the spontaneous curvature and elasticity of the interfacial film, when interfacial tension is very low. The spontaneous curvature of an interface is basically determined by the geometric packing of surfactant and cosurfactant molecules at the interface, whereas the interfacial elasticity is related to the energy required to bend the interface. The droplet size and solubilization of microemulsions is mainly determined by the radius of spontaneous curvature, and is further influenced by interfacial elasticity and interdroplet interactions. A w/o microemulsion with a highly curved and relatively rigid interfacial film can exist in equilibrium with excess water at the solubilization limit due to the interfacial bending stress. Increasing the natural radius and fluidity of the interface can increase the droplet size and hence the solubilization in the microemulsion. On the other hand, a w/o microemulsion with a highly fluid interfacial film can exist in equilibrium with an excess oil phase containing a low density of microemulsion droplets due to attractive interdroplet interaction. Increasing the interfacial rigidity and decreasing the natural radius in this case can increase water solubilization in the microemulsion by retarding the phase separation process. Thus, a maximum water solubilization in a w/o microemulsion can be obtained by minimizing both the interfacial bending stress of rigid interfaces and the attractive interdroplet interaction of fluid interfaces at an optimal interfacial curvature and elasticity. The study of phase equilibria of microemulsions can serve as a simple method to evaluate the property of the interface and provide phenomenological guidance for the formulation of microemulsions with maximum solubilization capacity.  相似文献   

3.
Ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4), were substituted for polar water and formed nonaqueous microemulsions with toluene by the aid of nonionic surfactant TX-100. The phase behavior of the ternary system was investigated, and microregions of bmimBF4-in-toluene (IL/O), bicontinuous, and toluene-in-bmimBF4 (O/IL) were identified by traditional electrical conductivity measurements. Dynamic light scattering (DLS) revealed the formation of the IL microemulsions. The micropolarities of the IL/O microemulsions were investigated by the UV-vis spectroscopy using the methyl orange (MO) and methylene blue (MB) as absorption probes. The results indicated that the polarity of the IL/O microemulsion increased only before the IL pools were formed, whereas a relatively fixed polar microenvironment was obtained in the IL pools of the microemulsions. Moreover, UV-vis spectroscopy has also shown that ionic salt compounds such as Ni(NO3)2, CoCl2, CuCl2, and biochemical reagent riboflavin could be solubilized into the IL/O microemulsion droplets, indicating that the IL/O microemulsions have potential application in the production of metallic or semiconductor nanomaterials, and in biological extractions or as solvents for enzymatic reactions. The IL/O microemulsions may have some expected effects due to the unique features of ILs and microemulsions.  相似文献   

4.
The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) forms nonaqueous microemulsions with benzene with the aid of nonionic surfactant TX-100. The phase diagram of the ternary system was prepared, and the microstructures of the microemulsion were recognized. On the basis of the phase diagram, a series of ionic liquid-in-oil (IL/O) microemulsions were chosen and characterized by dynamic light scattering (DLS), which shows a similar swelling behavior to typical water-in-oil (W/O) microemulsions. The existence of IL pools in the IL/O microemulsion was confirmed by UV/Vis spectroscopic analysis with CoCl2 and methylene blue (MB) as the absorption probes. A constant polarity of the IL pool is observed, even if small amounts of water are added to the microemulsion, thus suggesting that the water molecules are solubilized in the polar outer shell of the microemulsion, as confirmed by FTIR spectra. 1H NMR spectroscopic analysis shows that these water molecules interact with the electronegative oxygen atoms of the oxyethylene (OE) units of TX-100 through hydrogen-bonding interactions, and the electronegative oxygen atoms of the water molecules attract the electropositive imidazolium rings of [bmim][BF4]. Hence, the water molecules are like a glue that stick the IL and OE units more tightly together and thus make the microemulsion system more stable. Considering the unique solubilization behavior of added water molecules, the IL/O microemulsion system may be used as a medium to prepare porous or hollow nanomaterials by hydrolysis reactions.  相似文献   

5.
New non-ionic microemulsions consisting of pentaethyleneglycol dodecyl ether, water, and 1-chloroalkanes were prepared, and their phase behavior was studied. A homologous series of five different 1-chloroalkanes from 1-chlorooctane to 1-chlorohexadecane was studied. The phase behavior of the microemulsions was determined by vertical sections through the Gibbs' phase prism ("fish" plots), from which valuable information such as the microemulsion balance temperature (T(0)), efficiency of the surfactant (phi*), temperature extension of the three-body phase (DeltaT), mean temperature (T(m)), and the monomeric solubility in oil (phi(mon,oil)) was obtained. The chlorinated alkanes in the microemulsions shift the balance temperature to about 14 degrees C lower compared with their n-alkane counterparts. This indicates the polar nature of the chlorinated oils and their ability to penetrate the surfactant film. The chlorinated alkanes thus behave as short n-alkane molecules and lower the spontaneous curvature of the microemulsion droplets. The efficiency of the surfactant and the monomeric solubility in oil systematically depend on the alkyl chain length of the oil, with the efficiency and solubility decreasing with increasing alkyl chain length of 1-chloroalkane. The size and shape of the microemulsion droplets in the microemulsion phase were studied by small-angle X-ray scattering (SAXS). For a surfactant-to-oil volume fraction ratio of 0.80, the droplets can be described by ellipsoidal shapes, and the size of the droplets increased with increasing alkyl chain length.  相似文献   

6.
The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) forms nonaqueous microemulsions with p-xylene, with the aid of the nonionic surfactant TX-100. The phase behavior of the ternary system is investigated, and three microregions of the microemulsions-ionic liquid-in-oil (IL/O), bicontinuous, and oil-in-ionic liquid (O/IL)-are identified by conductivity measurements, according to percolation theory. On the basis of a phase diagram, a series of IL/O microemulsions are chosen and characterized by dynamic light scattering (DLS). The size of aggregates increases on increasing the amount of added polar component (bmimBF(4)), which is a similar phenomenon to that observed for typical water-in-oil (W/O) microemulsions, suggesting the formation of IL/O microemulsions. The microstructural characteristics of the microemulsions are investigated by FTIR and 1H NMR spectroscopy. The results indicate that the interaction between the electronegative oxygen atoms of the oxyethylene (OE) units in TX-100 and the electropositive imidazolium ring may be the driving force for the solubilization of bmimBF4 into the core of the TX-100 aggregates. In addition, the micropolarity of the microemulsions is investigated by using methyl orange (MO) as a UV/Vis spectroscopic probe. A relatively constant polarity of the microemulsion droplets is obtained in the IL microemulsion. Finally, a plausible structure for the IL/O microemulsion is presented.  相似文献   

7.
We demonstrate a novel ionic liquid (IL) microemulsion, consisting of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) and nonionic surfactant Triton X-100 prepared in triethylamine which is used either as an organic solvent or a Lewis base. The effects of small amounts of added water on the microstructure of the IL microemulsion are investigated by various techniques. UV/Vis spectroscopic analysis and FTIR spectra indicate that these water molecules are not solubilized into the IL pools of the microemulsions. 1H NMR spectra further show that the added water binds with triethylamine to form a surrounding OH- base environment. Some of OH- ions enter the palisade layers of the IL microemulsions and a continuous base interface is created. The unique solubilization behavior of water reveals that it is possible to use the triethylamine microemulsions as a template to prepare metal hydroxides as well as metal oxides in the microemulsions, which is not possible when using traditional microemulsions.  相似文献   

8.
The effect of a common polymer, polyethylene glycol with molecular weight of 400 (PEG-400) on the microstructure of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4)/Triton X-100/cyclohexane ionic liquid (IL) reverse microemulsion has been investigated. The addition of PEG-400 leaded to the linear increase of the microemulsion droplet size, in accordance with the observation of dispersed phase, showing that PEG-400 was only solubilized into the polar interior of the IL microemulsions. FTIR spectroscopic analysis indicated that the addition of PEG-400 decreased the electrostatic interaction between the oxygen atoms of OE units and the positive electrical charged imidazolium cation of bmimBF4. At the same time, the oxygen atoms of PEG-400 can also interact with the imidazolium cation. These results suggested that small amounts of PEG-400 entered the palisade layers of the IL microemulsion. The conductivity of the IL reverse microemulsions was decreased owing to the dilution of conducting polar cores by the addition of insulative PEG-400, indicating that PEG-400 was only solubilized into the reverse IL microemulsion interior. The conclusion was further supported by viscosity measurement.  相似文献   

9.
10.
Microemulsions are important formulations in cosmetics and pharmaceutics and one peculiarity lies in the so-called "phase inversion" that takes place at a given water-to-oil concentration ratio and where the average curvature of the surfactant film is zero. In that context, we investigated the structural transitions occurring in Brij 96-based microemulsions with the cosmetic oil ethyl oleate and studied the influence of the short chain alcohol butanol on their structure and properties as a function of water addition. The characterization has been carried out by means of transport properties, spectroscopy, DLS, SANS, and electrochemical methods. The results confirm that the nonionic Brij 96 in combination with butanol as cosurfactant forms a U-type microemulsion that upon addition of water undergoes a continuous transition from swollen reverse micelles to oil-in-water (O/W) microemulsion via a bicontinuous region. After determining the structural transition through viscosity and surface tension, the 2D-ROESY studies give an insight into the microstructure, i.e., the oil component ethyl oleate mainly is located at the hydrophobic tails of surfactant while butanol molecules reside preferentially in the interface. SANS experiments show a continuous increase of the size of the structural units with increasing water content. The DLS results are more complex and show the presence of two relaxation modes in these microemulsions for low water content and a single diffusive mode only for the O/W microemulsion droplets. The fast relaxation reflects the size of the structural units while the slower one is attributed to the formation of a network of percolated microemulsion aggregates. Electrochemical studies using ferrocene have been carried out and successfully elucidated the structural transformations with the help of diffusion coefficients. An unusual behavior of ferrocene has been observed in the present microheterogeneous medium, giving a deeper insight into ferrocene electrochemistry. NMR-ROESY experiments give information regarding the internal organization of the microemulsion droplets. In general, one finds a continuous structural transition from a W/O over a bicontinuous to an O/W microemulsion, however with a peculiar network formation over an extended concentration range, which is attributed to the somewhat amphiphilic oil ethyl oleate. The detailed knowledge of the structural behavior of this type of system might be important for their future applications.  相似文献   

11.
A microemulsion of decane droplets stabilized by a nonionic surfactant film is progressively charged by substitution of a nonionic surfactant molecule by a cationic surfactant. We check that the microemulsion droplets remain identical within the explored range of volume fraction (0.02-0.18) and of the number of charges per droplet (0-40). We probe the dynamics of these microemulsions by dynamic light scattering. Despite the similar structures of the uncharged and charged microemulsions, the dynamics are very different. In the neutral microemulsion, the fluctuations of polarization relax, as is well-known, via the collective diffusion of the droplets. In the charged microemulsions, two modes of relaxation are observed. The fast one is ascribed classically to the collective diffusion of the charged droplets coupled to the diffusion of the counterions. The slow one has, to our knowledge, not been observed previously neither in similar microemulsions nor in charged spherical colloids. We show that the slow mode is also diffusive and suggest that its possible origin is the relaxation of local charge fluctuations via the local exchange of droplets bearing different numbers of charges. The diffusion coefficient associated with this mode is then the self-diffusion coefficient of the droplets.  相似文献   

12.
The location of phenothiazine (PTZ) in sodium dodecyl sulfate (SDS)/n-pentanol (n-C5H11OH)/water microemulsions is studied by cyclic voltammetry at a Pt electrode. The results indicate that PTZ exists in the membrane phase of microemulsion droplets with its N atom or S atom toward the polar head of the surfactant. In addition, we examine the effect of the compositions and structures of the microemulsions, pH, temperature, and the inorganic salts on the location distribution for PTZ in the membrane phase of the microemulsions. The results show that the location distribution for PTZ in the membrane phase of the microemulsions is mainly dependent on the hydrogen bond between the -NH in PTZ and n-pentanol (or the -SO4- of SDS) and on the electrostatic interaction between the S atom (or N atom) in PTZ and the polar head of SDS.  相似文献   

13.
For the synthesis of Pt nanoparticles we used water-in-oil droplet microemulsions as templates. The focus was on the correlation between the size of the microemulsion droplets and that of the resulting Pt particles. To study this correlation in a systematic way, all particles were synthesized at the water emulsification failure boundaries where the microemulsion droplets are spherical and where their size can easily be tuned by the amount of added water. The metallic particles were synthesized by mixing two microemulsions one of which contains the metal salt H(2)PtCl(6) and the other the reducing agent NaBH(4). The size and structure of the microemulsion droplets was studied via small-angle X-ray scattering, while the Pt particles were characterized by high-resolution transmission electron microscopy in combination with energy-dispersive X-ray spectroscopy and selected area electron diffraction. The clear correlation between droplet and particle size was further supported by accompanying Monte Carlo simulations.  相似文献   

14.
15.
Fluorescence correlation spectroscopy (FCS) has been successfully used to characterise water-in-oil (w/o) microemulsions. The investigated systems were stabilised by sodium bis-2-ethylhexyl sulphosuccinate (AOT) and the measured diffusion times have been related to the radii of the aggregated species, which for some systems, were separately determined by small-angle neutron scattering (SANS). We demonstrate that FCS is capable of measuring hydrodynamic radii of microemulsions rapidly and at surfactant concentrations lower than previously reported for other techniques. FCS was also used to specifically interrogate microemulsion droplets containing a fluorescently-labelled biomolecule, specifically phalloidin, a peptide fungal toxin from Amanita phalloides, and the enzyme -chymotrypsin (-CT). The microemulsion droplets are only marginally increased in size if a small peptide (phalloidin) is included in the water phase, whereas the droplet size is significantly increased when a larger protein (-CT) is included.  相似文献   

16.
Dynamic light scattering experiments have been performed at various concentrations, of pharmaceutical oil-in-water microemulsions consisting of Eutanol G as oil, a blend of a high (Tagat O2) and a low (Poloxamer 331) hydrophilic–lipophilic balance surfactant, and a hydrophilic phase (propylene glycol/water). We probe the dynamics of these microemulsions by dynamic light scattering. In the measured concentration range, two modes of relaxation were observed. The faster decaying mode is ascribed classically to the collective diffusion D c (total droplet number density fluctuation). We show that the slow mode is also diffusive and suggest that its possible origin is the relaxation of polydispersity fluctuations. The diffusion coefficient associated with this mode is then the self-diffusion D s of the droplets. It was found that D c and D s had opposite volume fractions of oil plus surfactants (ϕ) dependence and a common limiting value D 0 for ϕ=0. Average hydrodynamic radius (R h=10.5 nm) of droplets was calculated from D 0. R h is supposed to compose the inner core, a surfactant film including possible solvent molecules, which migrate with the droplet. The concentration dependence of diffusion coefficients reflects the effect of hard sphere and the supplementary repulsive interactions which arises due to loss of entropy, when absorbed chains of surfactant intermingle on the close approach of the two droplets. This mechanism could also explain the observed stability of our systems. The estimated extent of polydispersity is 0.22 from the amplitude of slower decaying mode. The polydispersity in microemulsion systems is dynamic in origin. Results indicate that the time scale for local polydispersity fluctuations is at least three orders of magnitude longer than the estimated time between droplet collisions.  相似文献   

17.
A common ionic liquid (IL), 1‐butyl‐3‐methylimidazolium tetrafluoroborate (bmimBF4), is used as polar solvent to induce the formation of a reverse bmimBF4‐in‐toluene IL microemulsion with the aid of the nonionic surfactant Triton X‐100. The swelling process of the microemulsion droplets by increasing bmimBF4 content is detected by dynamic light scattering (DLS), conductivity, UV/Vis spectroscopy, and freeze‐fracture transmission electron microscopy (FF–TEM). The results show that the microemulsion droplets initially formed are enlarged by the addition of bmimBF4. However, successive addition of bmimBF4 lead to the appearance of large‐sized microemulsion droplet clusters (200–400 nm). NMR spectroscopic analysis reveal that the special structures and properties of bmimBF4 and Triton X‐100 together with the polar nature of toluene contribute to the formation of such self‐assemblies. These unique self‐assembled structures of IL‐based microemulsion droplet clusters may have some unusual and unique properties with a number of interesting possibilities for potential applications.  相似文献   

18.
Static and quasielastic light-scattering measurements of endsulfonated polyisoprene in a water in oil (w/o) microemulsions were used to characterize the structure and diffusion properties of this complex system. The hydrophilic end groups of the polymer stick to the surfactant covered oil/water interface, thus bridging the water droplets. This structure formation decreases the mobility of the aqueous nanodroplets and polymer molecules. At interdroplet distances larger than the end-to-end distance of the ionomer chain a decrease of the osmotic modulus is observed. It can be explained by a depletion force of free ionomer chains acting on the nanodroplets. With increasing polymer concentration structure formation of the microemulsion is observed at nanodroplet concentrations where the ionomer chains just fit the average separation of two nanodroplets.  相似文献   

19.
Increasing triolein content of oil-in-water microemulsions in the pure C(12)E(4)/water/n-hexadecane/triolein system while maintaining a fixed surfactant concentration and volume fraction of drops raises the temperature of the solubilisation boundary, where excess oil separates, but has only a slight effect on the (higher) cloud point temperature, where excess water appears. Thus, the temperature range of the single-phase microemulsion shrinks and ultimately disappears. When such microemulsions are in equilibrium with excess oil, the hexadecane/triolein ratio is greater in the microemulsion, probably because the larger triolein molecules are unable to penetrate the hydrocarbon chain region of the surfactant films of the microemulsion droplets. Indeed, monolayer studies and calculations based on microemulsion and excess oil compositions indicate that the films have minimal triolein and similar ratios of hexadecane to surfactant. Triolein drops brought into contact with hexadecane-in-water microemulsions first swell as they incorporate hexadecane, then shrink owing to solubilisation. Interfacial tension decreases during this process until it becomes almost constant near 0.01 mN m(-1), suggesting that the drops in the final stages of solubilisation have high hexadecane contents. A microemulsion containing 10 wt% C(12)E(4) and 15 wt% hexadecane was able to remove over 50% of triolein from polyester fabric at 25 degrees C, more than twice that removed by an oil-free solution with the same surfactant concentration in similar experiments.  相似文献   

20.
(1)H NMR relaxation and diffusion studies were performed on water-in-CO(2) (W/C) microemulsion systems formed with phosphorus fluorosurfactants of bis[2-(F-hexyl)ethyl] phosphate salts (DiF(8)), having different counterions (Na(+), NH(4)(+), N(CH(3))(4)(+)) by means of high-pressure in situ NMR. Water has a low solubility in CO(2) and is mainly solubilized by the microemulsion droplets formed with surfactants added to CO(2) and water mixtures. There is rapid exchange of water between the bulk CO(2) and the microemulsion droplets; however, NMR relaxation measurements show that the entrapped water has restricted motion, and there is little "free" water in the core. Counterions entrapped by the droplets are mostly associated with the surfactant headgroups: diffusion measurements show that counterions and the surfactant molecules move together with a diffusion coefficient that is associated with the droplet. The outer shell of the microemulsion droplets consists of the surfactant tails with some associated CO(2). For W/C microemulsions formed with the phosphate-based surfactant having the ammonia counterion (A-DiF(8)), the (1)H NMR signal for NH(4)(+) shows a much larger diffusion coefficient than that of the surfactant tails. This apparent paradox is explained on the basis of proton exchange between water and the ammonium ion. The observed dependence of the relaxation time (T(2)) on W(0) (mole ratio of water to surfactant in the droplets) for water and NH(4)(+) can also be explained by this exchange model. The average hydrodynamic radius of A-DiF(8) microemulsion droplets estimated from NMR diffusion measurements (25 degrees C, 206 bar, W(0) = 5) was R(h) = 2.0 nm. Assuming the theoretical ratio of R(g)/R(h) = 0.775 for a solid sphere, where R(g) is the radius of gyration, the equivalent hydrodynamic radius from SANS is R(h) = 1.87 nm. The radii measured by the two techniques are in reasonable agreement, as the two techniques are weighted to measure somewhat different parts of the micelle structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号