首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Herein, we report the synthesis of various heterocyclic ring systems containing 1,2,3-triazole from the reactions of acid hydrazides and commercially available reagents, using efficient and simple procedures. Reactions of certain 1,2,3-triazole-4-carbohydrazides and α-bromoketones in boiling ethanol afforded the corresponding hydrazones rather than the expected triazines. The hydrazones could also be synthesized in 85-90% yield via an alternative pathway that involved the reaction of 1,2,3-triazole-4-carbohydrazides and 4-acetyl-1,2,3-triazoles in boiling ethanol containing glacial acetic acid. Reaction of one of the 4-carbohydrazides with carbon disulfide, followed by the reaction with hydrazine hydrate, gave 4H-1,2,4-triazole-3-thiol in 73% yield, which further reacted with other α-bromoketones in boiling ethanol to afford 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines in 82-84% yields. Additionally, reactions of certain carbohydrazides with ethyl 2-cyano-3,3-bis(methylthio)acrylate gave 1-aryl-1H-1,2,3-triazole-4-carbohydrazides rather than the expected 1H-pyrazole-4-carboxylates.  相似文献   

2.
Two new Zn(II) complexes, [Zn(L)2(H2O)2] where L is 1-substituted 5-methyl-1H-[1,2,3]-triazole-4-carboxylic acid, have been synthesized and characterized by elemental analysis, FT–IR, and solid-state fluorescent emission spectroscopy. Structures have been established by single-crystal X-ray diffraction, revealing the discrete nature of the complexes in which Zn centers adopt slightly distorted octahedral geometry. In the complexes, the 1-substituted 5-methyl-1H-[1,2,3]-triazole-4-carboxylic acid is bidentate.  相似文献   

3.
Reaction of 5-methyl-1-aryl-1H-1,2,3-triazole-4-carbocylic acid chlorides with tryptamine derivatives afforded substituted 1-aryl-N-[2-(1H-indol-3-yl)ethyl]-5-methyl-1H-1,2,3-triazole-4-carboxamides. At heating these compounds in toluene in the presence of POCl3 and P2O5 Bischler-Napieralski cyclization occurs giving 1-(1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)-4,9-dihydro-3H-β-carbolines that can be transformed into β-carboline and tetrahydro-β-carboline derivatives.  相似文献   

4.
Diazotization of 2-amino-1,3,4-thiadiazoles gave 1,3,4-thiadiazole-2-diazonium sulfates which were converted to 2-azido-1,3,4-thiadiazoles. The latter reacted with ethyl acetoacetate in the presence of sodium methoxide in methanol to produce 1-(5-R1-1,3,4-thiadiazol-2-yl)-5-R2-1H-1,2,3-triazole-4-carboxylic acid derivatives. The reactions of 2-azido-5-methyl-1,3,4-thiadiazole and 2-azido-1,3-thiazole with ethyl 3-(1,3-benzodioxol-5-yl)-3-oxopropanoate led to the formation of 1,2,3-triazole ring under milder conditions (K2CO3, DMSO). Various 1,2,3-triazole-4-carboxylic acid derivatives were synthesized.  相似文献   

5.
The treatment of 4-(2-aminophenyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinecarboxylic acid diethyl ester (III) with refluxing toluene or pyridine afforded 1,2,3,6-tetrahydro-2,4-dimethyl-2,6-methano-1,3-benzodiazocine-5,11-dicarboxylic acid diethyl ester (IV) as the major product. In addition, the following minor products were isolated: 2-methyl-3-quinolinecarboxylic acid ethyl ester (V), 3-(2-aminophenyl)-5-methyl-6-azabicyclo[3,3,1]-hept-1-ene-2,4-dicarboxylic acid diethyl ester (VI), and 5,6-dihydro-2,4-dimethyl-5-oxobenzo[c][2,7]naphthyridine-1-carboxylic acid ethyl ester (VII). In contrast, acidic conditions caused the conversion of III into V in a 95% yield. The formation of the latter appears to involve IV as an intermediate, since IV degraded rapidly in acid to give V in a quantitative yield.  相似文献   

6.
The structure of 3-oxy-5-phenyl-1H-1,2,3-triazole-4-carboxylic acid was determined both experimentally (by the X-ray diffraction method) and by quantum-chemical calculations. Alkylation of 3-oxy-5-phenyl-1H-1,2,3-triazole-4-carboxylic acid (as crystal hydrate) with methyl iodide, depending on the reactant ratio, gives 1-methoxy-4-phenyl-1H-1,2,3-triazole-5-carboxylic acid and methyl 1-methoxy-4-phenyl-1H-1,2,3-triazole-5-carboxylate. Nitration of the title compound under mild conditions occurs at the 5-phenyl group with formation of meta-nitro derivative, while under more severe conditions 3,5-dinitrobenzoic acid is obtained. 3-Oxy-5-phenyl-1H-1,2,3-triazole-4-carboxylic acid was also converted into the corresponding acid chloride and substituted amide.__________Translated from Zhurnal Organicheskoi Khimii, Vol. 41, No. 4, 2005, pp. 601–608.Original Russian Text Copyright © 2005 by Shtabova, Shaposhnikov, Mel’nikova, Tselinskii, Nather, Traulsen, Friedrichsen.  相似文献   

7.
在不同反应条件下反应得到了两种1,2,3-三唑衍生物的配合物[Co(H2O)6][Co(L13]2·4H2O(1)和Cu(L222)(HL1=5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid;HL2=1-(4-iodophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylic acid)。通过X射线单晶衍射和红外光谱确定了晶体结构,同时对配合物12进行了表面作用分析(Hirshfeld surface analysis),在二维指纹图谱中可以清楚的看到配合物中的主要分子间作用。  相似文献   

8.

The reaction of 5-aminomethyl-4-(1,2,3-thiadiazol-4-yl)furan-2-carboxylic acid ethyl ester with bases has given ethyl 5-sulfanylidene-4,5,6,7-tetrahydrofuro[2,3-c]pyridine-2-carboxylate as a result of intramolecular 6-endo-dig-cyclization of thioketene generated in situ with an internal CH2NH2 nucleophile. The obtained ester has been alkylated with iodomethane at the sulfur atom to form ethyl 5-methylsulfanyl-4,7-dihydrofuro[2,3-c] pyridine-2-carboxylate. The Hantzsch reaction with ω-bromoacetophenone has resulted in the formation of 7-ethoxycarbonyl-3-phenylfuro[3,2-d[1,3]thiazolo[3,2-a]pyridin-4-ium bromide.

  相似文献   

9.
Reactions of 4,5-dibromo-1,2,3-triazole, 1H-1,2,3-benzotriazole, and 2-phenyl-2H-1,2,3-triazole-4-carbonyl chloride with trifluoromethanesulfonyl chloride and trifluoromethanesulfonic anhydride were studied. 4,5-Dibromo-1,2,3-triazole sodium salt reacted with CF3SO2Cl in tetrahydrofuran to give 4,5-dibromo-2-(2-tetrahydrofuryl)-2H-1,2,3-triazole rather than expected 4,5-dibromo-2-trifluoromethylsulfonyl-2H-1,2,3-triazole. The latter was synthesized by treatment of 4,5-dibromo-1,2,3-triazole sodium salt with trifluoromethanesulfonic anhydride. The reaction of benzotriazole with (CF3SO2)2O afforded 1-trifluoromethylsulfonyl-1H-1,2,3-benzotriazole and 1,2,3-benzotriazolium trifluoromethanesulfonate. 2-Phenyl-2H-1,2,3-triazole-4-carbonyl chloride reacted with trifluoromethanesulfonamide sodium salt in DMF, yielding N-(dimethylaminomethylene)trifluoromethanesulfonamide. Possible ways for formation of the unexpected products were proposed.  相似文献   

10.
The acylation of simple arenes such as benzene and alkylated benzenes with N-protected 5-chloro-1H-1,2,3-triazole-4-carboxylic acid chlorides under Friedel-Crafts conditions results in excellent yields of the corresponding ketones. Resorcinol dimethyl ethers undergo similar acylation reactions in somewhat lower yield with concomitant monodemethylation, and these derivatives undergo a facile base mediated cyclization to 9-oxo-3H,9H-benzopyrano[2,3-d]-1,2,3-triazoles.  相似文献   

11.
Trifluoromethanesulfonic Hydrazides   总被引:1,自引:0,他引:1  
We succeeded to observe at low temperature in reactions of trifluoromethanesulfonic anhydride and trifluoromethanesulfonyl chloride with hydrazine, phenyl hydrazine, and 1,1-dimethylhydrazine a formation of the corresponding trifluoromethanesulfonic hydrazides that at heating to room temperature decomposed liberating nitrogen and affording trifluoromethanesulfinic acid. 2-Phenyl-2H-1,2,3-triazole-4-carboxylic hydrazide reacted with trifluoromethanesulfonic anhydride to furnish trifluoro-N'-(2-phenyl-2H-1,2,3-triazol-4-ylcarbonyl)methane-sulfonic hydrazide that decomposed at heating with elimination of trifluoromethanesulfinic acid and nitrogen yielding 2-phenyl-2H-1,2,3-triazole-4-carbaldehyde.  相似文献   

12.
Substituted 1H-1,2,3-triazole-4-carboxylic acids were synthesized by a three-component reaction of arylazides, ethyl 4-chloro-3-oxobutanoate, and either O- or S-nucleophiles in the presence of a base catalyst. The reaction most probably proceeded as a [3 + 2] cyclocondensation reaction between arylazide and ethyl 4-chloro-3-oxobutanoate with the further nucleophilic substitution of chlorine in the chloromethyl group. Reaction optimization was performed to carry out the reaction with an O-nucleophile. Conditions were found under which diethyl 2,5-dihydroxyterephthalate (the product of self-condensation of two molecules of ethyl 4-chloro-3-oxobutanoate with the further oxidation by azide) was obtained.  相似文献   

13.
Reactions of methyl 3-cyclopropyl-3-oxopropanoate with chloroacetone and ammonia, benzaldehyde and ammonia, and benzoquinone gave, respectively, methyl 2-cyclopropyl-5-methyl-1H-pyrrole-3-carboxylate, dimethyl 2,6-dicyclopropyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate, and methyl 2-cyclopropyl-5-hydroxy-1-benzofuran-3-carboxylate. Cyclization of methyl 3-cyclopropyl-3-oxopropanoate with ethyl chloro(arylhydrazono)ethanoates and other halohydrazones led to the formation of 3-substituted 1-aryl-5-cyclopropyl-1H-pyrazole-4-carboxylic acids, and 5-cyclopropyl-1-(quinolin-5-yl)-1H-1,2,3-triazole-4-carboxylic acid was obtained by reaction of the title compound with 5-azidoquinolines.  相似文献   

14.
Base-promoted cyclization of tert-butyl [2-(benzylideneamino)phenyl]acetate (13a) and subsequent C3-alkylation with allyl bromide affords 3-allyl-2-phenyl-2,3-dihydro-1H-indole-3-carboxylic acid, tert-butyl ester (15b) in high yield as a single diastereomer. This result is contrary to prior publications that describe failed cyclization of an analogous ethyl ester (ethyl [2-(4-methoxybenzylideneamino)phenyl]acetate) under strongly basic conditions. N-Acylation, olefin dihydroxylation, and tert-butyl ester cleavage affords the spirocyclic lactone 18 as a pair of diastereomers. Isolation and characterization of individual diastereomers 18a and 18b are described.  相似文献   

15.
A method for the synthesis of the title compound 3 consisted of an intramolecular cyclization in a stannic chloride catalyzed Friedel-Crafts reaction of N-(2-methylthiophenyl)-5-oxoproline chloride 10 , prepared by chlorination of the corresponding acid 9 obtained by hydrolysis of its ethyl ester 8 . Condensation of 2-methylthioaniline 4 with diethyl bromomalonate 5 afforded diethyl 2-methylthioanilinomalonate 6 which gave 8 either directly by reaction with ethyl acrylate or by alkylation with ethyl β-bromopropionate or ethyl acrylate and cyclization of resulting triethyl 2-(2-methylthio)anilino-2-carboxyglutarate 7 . This method was not convenient because of the poor yield of 3 (14%). On the other hand, cyclization of N-(2-mercaptophenyl)-5-oxoproline 14 with DCC and DMAP provided 3 in 45% yield. Oxidation with m-CPBA of the esters 11 and 8 , demethylation via the Pummerer rearrangement of the respective sulphoxides 12 and 17 with TFAA and oxidation with iodine of resulting N-(2-mercap-tophenyl)-5-oxoproline esters 13 and 18 gave the corresponding disulphides 16 and 19 . Hydrolysis of these latter compounds and reduction of the resulting bis[2-[2-(hydroxycarbonyl)-5-oxo-1-pyrrolidinyl]phenyl] disulphide 15 with sodium dithionite afforded the required 14 . Deprotection of t-butyl ester 13 with TFA at 55° to obtain 14 led to 3 in 42% yield. Finally the Pummerer rearrangement of N-(2-methylsulphinylphenyl)-5-oxo-proline 20 yielded the mixture of 14 and 15 .  相似文献   

16.
Alkylation of 6,7-difluoro-4-hydroxyquinoline-3-carboxylic acid ethyl ester with substituted-benzyl chlorides gave 1-(substituted-benzyl)-6,7-difluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid ethyl esters. Their treatment with piperazine or N-methylpiperazine in pyridine yielded 1-(substituted-benzyl)-6-fluoro-1,4-dihydro-4-oxo-7-(l-piperazinyl)quinoline-3-carboxylic acid ethyl esters which were hydrolyzed with aqueous sodium hydroxide and then acidified with hydrochloric acid afforded the desired 1-(substituted-benzyl)-6-fluoro-1,4-dihydro-4-oxo-7-(1-iperazinyl)quinoline-3-carboxylic acids. The 6,8-difluoro analogs were prepared similarly using 6,7,8-trifluoro-4-hydroxyquinoline-3-carboxylic acid ethyl ester as a starting material. Some of these quinolones demonstrated fairly good antibacterial activities. Among them, 6-fluoro-1-(4-fluorophenylmethyl)-1,4-dihydro-7-(1-iperazinyl)-4-oxoquinoline-3-carboxylic acid ( 7d ) and 6,8-difluoro-1-(3-fluorophenylmethyl)-1,4-dihydro-7-(1-piperazinyl)-4-oxoquinoline-3-carboxylic acid ( 8c ) are two of the best.  相似文献   

17.
5-Hydroxy-7-alkyl-2-phenyl-7H-pyrrolo[2,3-d]pyrimidine-6-carbonitriles (VIIb-d) and 5-hydroxy-2-phenyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid, ethyl ester (VIIa) were prepared from 5-carbethoxy-4-chloro-2-phenylpyrimidine (IV) via 4-[(cyanomethyl)alkylamino[-2-phenyl-5-pyrimidinecarboxylic acid, ethyl esters (Vb-d) and 4-[(carboxymethyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid, diethyl ester (Va), respectively. The hydroxy group of the pyrrolo-[2,3-d]pyrimidines could be methylated, acetylated and tosylated. Hydrolysis of 5-methoxy-7-methyl-2-phenyl-7H-pyrrolo[2,3-d]pyrimidine-6-carbonitrile (IX) afforded the corresponding amide (X).  相似文献   

18.
The condensation of the acetylmethylene group in the tert-butyl esters of 7Z-acetylmethylene-3-methyl-3-cephem-4-carboxylic acid and 7Z-acetylmethylene-3-methyl-1,1-dioxo-3-cephem-4-carboxylic acid and in 7Z-acetylmethylene-3-methylene-1,1-dioxo-3-cephem with arylmethoxyamines and O-alkylation of the tert-butyl ester of 7Z-(2-hydroxyimino)propylidene-3-methyl-1,1-dioxo-3-cephem-4-carboxylic acid using substituted benzyl bromides as well as pyridylmethyl chlorides gave arylmethoxyimino and pyridylmethoxyimino derivatives of these compounds in the syn and anti isomeric forms. The Vilsmaier reagent was used to introduce the N,N-dimethylaminomethylene group at C-2 of the cephem system in the tert-butyl esters of 7Z-[2-(arylmethoxyimino)propylidene]-3-methyl-1,1-dioxo-3-cephem-4-carboxylic acid. Subsequent transformation of the N,N-dimethylaminomethylene cephems using hydroxylamine led to 3Z-[2-(anti-arylmethoxyimino)propylidene]-tert-butoxycarbonylmethyl-4-(5-methyl-4-isoxazolylsulfonyl)- azetidin-2-ones. Condensation of the acetyl group in the tert-butyl ester of 7Z-acetylmethylene- 3-methyl-1,1-dioxo-3-cephem-4-carboxylic acid with 4-bromophenylhydrazine gave a cephem with a 2-(4-bromophenylhydrazono)propylidene group at C-7. Acylation of the tert-butyl ester of 7Z-(2-hydroxyimino)propylidene-3-methyl-1,1-dioxo-3-cephem-4-carboxylic acid by 2-bromobenzoyl chloride gave a cephem with a 2-(2-bromo-benzoyloxyimino)propylidene group at C-7. Biological screening of these products towards to malignant and normal cells in vitro showed that their antitumor activity and cytotoxic selectivity towards to malignant and normal cells depend on the structure and configuration of the arylmethoxyimino and pyridylmethoxyimino groups in the 7-alkylidene substituent as well as on the presence or absence of N,N-dimethylaminomethylene and carboxyl groups, respectively, at C-2 and C-4 of the cephem system.  相似文献   

19.
A convenient synthesis of furo[3,2-b]pyridine and its 2- and 3-methyl derivatives from ethyl 3-hydroxypiconate ( 1 ) is described. The hydroxy ester 1 was O-alkylated with ethyl bromoacetate or ethyl 2-bromopropionate to give the diester 2a or 2b . Cyclization of compound 2a afforded ethyl 3-hydroxyfuro[3,2-b]pyridine-2-carboxylate ( 3 ) which in turn was hydrolyzed and decarboxylated to give furo[3,2-b]pyridin-3-(2H)-one ( 4a ). Cyclization of 2b gave the 2-methyl derivative 4b . Reduction of 4a and 4b with sodium borohydride yielded the corresponding hydroxy derivative 5a and 5b respectively, which were dehydrated with phosphoric acid to give furo[3,2-b]pyridine ( 6a ) and its 2-methyl derivative ( 6b ). 2-Acetylpyridin-3-ol ( 8 ) was converted to the ethoxycarbonylmethyl ether ( 9 ) by O-alkylation with ethyl bromoacetate, which was cyclized to give 3-methylfuro[3,2-b]pyridine-2-carboxylic acid ( 10 ). Decarboxylation of 10 afforded 3-methylfuro[3,2-b]pyridine ( 11 ).  相似文献   

20.
Summary. A series of substituted heterocyclic systems were prepared from N1-[4-(4-fluorocinnamoyl)phenyl]-5-chloro-2-methoxybenzamide, which was prepared from the corresponding 5-chloroanisic acid (2-methoxy-4-chlorobenzoic acid) as starting material. Treating of the cinnamoyl derivative with hydrazine hydrate in dioxane afforded a pyrazoline, which was reacted with morpholine and paraformaldehyde to give the N-substituted pyrazoline. Acylation of pyrazoline with acetyl chloride in dioxane afforded the N-acetyl analogue. Also, the cinamoyl derivative was reacted with methylhydrazine, phenylhydrazine, or ethyl cyanoacetate to yield the corresponding N-methyl-, N-phenylpyrazoline, pyrane, and pyridone derivatives. Condensation of the cinnamoyl derivative with cyanothioacetamide gave the pyridinethione derivative, which was treated with ethyl chloroacetate affording the ethyl carboxylate derivative. Also, it was reacted with malononitrile or ethyl acetoacetae to give the cyano amino analougues and ethyl carboxylate, which was reacted with methylhydrazine to give the (indazolyl)phenyl derivative. On the other hand, reaction of cinnamoyl derivative with acetyl acetone afforded the cyclohexenyl derivative, which was reacted with hydrazine hydrate to give the [methylindazolyl]phenyl derivative. Condensation of the cinnamoyl derivative with guanidine hydrochloride or thiourea afforded the aminopyrimidine derivative and thioxopyrimidine. The latter was condensed with chloroacetic acid to yield a thiazolopyrimidine, which was condensed with 2-thiophenealdehyde to yield the arylmethylene derivative, however, it was also prepared directly from thiopyrimidine by the action of chloroacetic acid, 2-thiophenealdehyde, and anhydrous sodium acetate. The pharmacological screening showed that many of these compounds have good anti-arrhythmic activity and low toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号