首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The analysis of residual dipolar couplings from an ensemble of conformations to extract molecular dynamics is intricate. The very mechanism that is necessary to perturb overall molecular tumbling to generate nonvanishing residual dipolar couplings gives rise to convoluted data. The measured values are essentially weighted averages over conformations. However, the weights are not simply the populations of conformations. Consequently, the observed order parameter is not exactly the true measure of motion. In the case of paramagnetic alignment, the apparent order parameter is expected to depend on the number of torsions that separate the locus of interest from the paramagnetic site. In the case of alignment due to steric obstruction, the uneven selection of conformations by their differing Saupe order matrices leads to a bias in the residual dipolar couplings-probed molecular dynamics.  相似文献   

2.
Protein structure and dynamics can be characterized on the atomistic level with both nuclear magnetic resonance (NMR) experiments and molecular dynamics (MD) simulations. Here, we quantify the ability of the recently presented CHARMM36 (C36) force field (FF) to reproduce various NMR observables using MD simulations. The studied NMR properties include backbone scalar couplings across hydrogen bonds, residual dipolar couplings (RDCs) and relaxation order parameter, as well as scalar couplings, RDCs, and order parameters for side‐chain amino‐ and methyl‐containing groups. It is shown that the C36 FF leads to better correlation with experimental data compared to the CHARMM22/CMAP FF and suggest using C36 in protein simulations. Although both CHARMM FFs contains the same nonbond parameters, our results show how the changes in the internal parameters associated with the peptide backbone via CMAP and the χ1 and χ2 dihedral parameters leads to improved treatment of the analyzed nonbond interactions. This highlights the importance of proper treatment of the internal covalent components in modeling nonbond interactions with molecular mechanics FFs. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
13C-(1)H residual dipolar couplings (RDC) have been measured for the bases and sugars in the theophylline-binding RNA aptamer, dissolved in filamentous phage medium, and used to investigate the long-range structural and dynamic behavior of the molecule in the solution state. The orientation dependent RDC provide additional restraints to further refine the overall structure of the RNA-theophylline complex, whose long-range order was poorly defined in the NOE-based structural ensemble. Structure refinement using RDC normally assumes that molecular alignment can be characterized by a single tensor and that the molecule is essentially rigid. To address the validity of this assumption for the complex of interest, we have analyzed distinct domains of the RNA molecule separately, so that local structure and alignment tensors experienced by each region are independently determined. Alignment tensors for the stem regions of the molecule were allowed to float freely during a restrained molecular dynamics structure refinement protocol and found to converge to similar magnitudes. During the second stage of the calculation, a single alignment tensor was thus applied for the whole molecule and an average molecular conformation satisfying all experimental data was determined. Semirigid-body molecular dynamics calculations were used to reorient the refined helical regions to a relative orientation consistent with this alignment tensor, allowing determination of the global conformation of the molecule. Simultaneously, the local structure of the theophylline-binding core of the molecule was refined under the influence of this common tensor. The final ensemble has an average pairwise root mean square deviation of 1.50 +/- 0.19 A taken over all heavy atoms, compared to 3.5 +/- 1.1 A for the ensemble determined without residual dipolar coupling. This study illustrates the importance of considering both the local and long-range nature of RDC when applying these restraints to structure refinements of nucleic acids.  相似文献   

4.
Residual dipolar couplings are highly useful NMR parameters for calculating and refining molecular structures, dynamics, and interactions. For some applications, however, it is inevitable that the preferred orientation of a molecule in an alignment medium is calculated a priori. Several methods have been developed to predict molecular orientations and residual dipolar couplings. Being beneficial for macromolecules and selected small‐molecule applications, such approaches lack sufficient accuracy for a large number of organic compounds for which the fine structure and eventually the flexibility of all involved molecules have to be considered or are limited to specific, well‐studied liquid crystals. We introduce a simplified model for detailed all‐atom molecular dynamics calculations with a polymer strand lined up along the principal axis as a new approach to simulate the preferred orientation of small to medium‐sized solutes in polymer‐based, gel‐type alignment media. As is shown by a first example of strychnine in a polystyrene/CDCl3 gel, the simulations potentially enable the accurate prediction of residual dipolar couplings taking into account structural details and dynamic averaging effects of both the polymer and the solute. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of internal motions on residual dipolar NMR couplings of proteins partially aligned in a liquid-crystalline environment are analyzed using a 10 ns molecular dynamics (MD) computer simulation of ubiquitin. For a set of alignment tensors with different orientations and rhombicities, MD-averaged dipolar couplings are determined and subsequently interpreted for different scenarios in terms of effective alignment tensors, average orientations of dipolar vectors, and intramolecular reorientational vector distributions. Analytical relationships are derived that reflect similarities and differences between motional scaling of dipolar couplings and scaling of dipolar relaxation data (NMR order parameters). Application of the self-consistent procedure presented here to dipolar coupling measurements of biomolecules aligned in different liquid-crystalline media should allow one to extract in a "model-free" way average orientations of dipolar vectors and specific aspects of their motions.  相似文献   

6.
NMR-based determination of the configuration of complex molecules containing many stereocenters is often not possible using traditional NOE data and coupling patterns. Making use of residual dipolar couplings (RDCs), we were able to determine the relative configuration of a natural product containing seven stereocenters, including a chiral amine lacking direct RDC data. To identify the correct relative configuration out of 32 possible ones, experimental RDCs were used in three different approaches for data interpretation: by fitting experimental data based singular value decomposition (SVD) using a single alignment tensor and either (i) a single conformer or (ii) multiple conformers, or alternatively (iii) using molecular dynamics simulations with tensorial orientational constraints (MDOC). Even though in all three approaches one and the same configuration could be selected and clear discrimination between possible configurations was achieved, the experimental data was not fully satisfied by the methods based on single tensor approaches. While these two approaches are faster, only MDOC is able to fully reproduce experimental results, as the obtained conformational ensemble adequately covers the conformational space necessary to describe the molecule with inherent flexibility.  相似文献   

7.
The glutamine binding protein (GlnBP) binds l ‐glutamine and cooperates with its cognate transporters during glutamine uptake. Crystal structure analysis has revealed an open and a closed conformation for apo‐ and holo‐GlnBP, respectively. However, the detailed conformational dynamics have remained unclear. Herein, we combined NMR spectroscopy, MD simulations, and single‐molecule FRET techniques to decipher the conformational dynamics of apo‐GlnBP. The NMR residual dipolar couplings of apo‐GlnBP were in good agreement with a MD‐derived structure ensemble consisting of four metastable states. The open and closed conformations are the two major states. This four‐state model was further validated by smFRET experiments and suggests the conformational selection mechanism in ligand recognition of GlnBP.  相似文献   

8.
9.
The conformational preference of the human milk oligosaccharide lacto-N-neotetraose, beta-d-Galp-(1 --> 4)-beta-d-GlcpNAc-(1 --> 3)-beta-d-Galp-(1 --> 4)-d-Glcp, has been analyzed using (1)H,(1)H T-ROESY and (1)H,(13)C trans-glycosidic J coupling experiments in isotropic solution and (1)H,(13)C residual dipolar couplings (RDCs) obtained in lyotropic liquid crystalline media. Molecular dynamics simulations of the tetrasaccharide with explicit water as the solvent revealed that two conformational states are significantly populated at the psi glycosidic torsion angle, defined by C(anomeric)-O-C-H, of the (1 --> 3)-linkage. Calculation of order parameters, related to the molecular shape, were based on the inertia tensor and fitting of experimental RDCs to different conformational states showed that psi(+) > 0 degrees is the major and psi(-) < 0 degrees is the minor conformation in solution, in complete agreement with a two-state analysis based on the T-ROESY data. Attention was also given to the effect of salt (200 mM NaCl) in the anisotropic medium, which was a ternary mixture of n-octyl-penta(ethylene glycol), n-octanol, and D(2)O.  相似文献   

10.
NMR restrictions are suitable to specify the geometry of a molecule when a single well-defined global free energy minimum exists that is significantly lower than other local minima. Carbohydrates are quite flexible, and therefore, NMR observables do not always correlate with a single conformer but instead with an ensemble of low free energy conformers that can be accessed by thermal fluctuations. In this communication, we describe a novel procedure to identify and weight the contribution to the ensemble of local minima conformers based on comparison to residual dipolar couplings (RDCs) or other NMR observables, such as scalar couplings. A genetic algorithm is implemented to globally minimize the R factor comparing calculated RDCs to experiment. This is done by optimizing the weights of different conformers derived from the exhaustive local minima conformational search program, fast sugar structure prediction software (FSPS). We apply this framework to six human milk sugars, LND-1, LNF-1, LNF-2, LNF-3, LNnT, and LNT, and are able to determine corresponding population weights for the ensemble of conformers. Interestingly, our results indicate that in all cases the RDCs can be well represented by only a few most important conformers. This confirms that several, but not all of the glycosidic linkages in histo-blood group "epitopes" are quite rigid.  相似文献   

11.
The longitudinal (13)C and (1)H relaxation rates were determined in porphycene in CD(2)Cl(2) solution. These data, augmented by (13)C{(1)H} NOE enhancements were numerically analyzed to evaluate the rotational diffusion tensor of the molecule and the vibrational correction for the one-bond (13)C-(1)H dipolar couplings. The (13)C and (1)H relaxation data seem to be consistent with each other, and the emerging picture of the rotational dynamics of porphycene compares well with the results that can be found in the literature.  相似文献   

12.
We report on molecular dynamics simulations of the frequency-dependent dielectric relaxation spectra at room temperature for aqueous solutions of a hydrophilic peptide and an amphiphilic peptide at two concentrations. We find that only the high-concentration amphiphilic peptide solution exhibits an anomalous dielectric increment over that of pure water, while the hydrophilic peptide exhibits a significant dielectric decrement. The dielectric component analysis carried out by decomposing these peptide solutions into peptide, hydration layer, and outer layer(s) of water clearly shows the presence of a unique dipolar component with a relaxation time scale on the order of approximately 25 ps (compared to the bulk water time scale of approximately 11 ps) that originates from the interaction between the hydration layer water and the outer layer(s) of water. Results obtained from the dielectric component analysis further show the emergence of a distinct and much lower frequency relaxation process for the high-concentration amphiphilic peptide compared to the hydrophilic peptide due to strong peptide dipolar couplings to all constituents, accompanied by a slowing of the structural relaxation in all water layers, giving rise to time scales close to approximately 1 ns. We suggest that the molecular origin of the dielectric relaxation anomalies is due to frustration in the water network arising from the amphiphilic chemistry of the peptide that does not allow it to reorient on the picosecond time scale of bulk water motions. This explanation is consistent with the idea of the "slaving" of residue side chain motions to protein surface water, and furthermore offers the possibility that the anomalous dynamics observed from a number of spectroscopies arises at the interface of hydrophobic and hydrophilic domains on the protein surface.  相似文献   

13.
A dielectric relaxation study of aqueous solutions of the amphiphilic model peptide N‐acetyl‐leucine amide (NALA) at 298 K over a wide range of hydration levels is presented. The experiments range from states where water builds up several hydration layers to states where single water molecules or small water clusters are shared by several NALA molecules. The dielectric spectra reveal two modes on the 10 and 100 ps timescales. These are largely broadened with regard to the Lorentzian shape caused by simple Debye‐type relaxation, and are well described by the Kohlrausch–Williams–Watts stretched exponential function. The fast mode is assigned to water reorientation comprising bulk water as well as hydration water. Even when all water molecules are in contact with the solute, this fast component is dominant, and its mean relaxation time is retarded by less than a factor of two relative to neat water. The amplitude of the slow process is far higher than expected for the dipolar reorientation of the solute. The observations are consistent with results from molecular dynamics simulations for a similar model peptide reported in the literature. They suggest that the slow relaxation mode is mainly founded in peptide–water dipolar couplings, with some additional contribution from slowly reorienting hydration water molecules. The results are discussed with regard to the hydration dynamics of proteins and the interpretation of dielectric spectra of protein solutions.  相似文献   

14.
We have measured the alignment of a range of benzene derivatives in cross‐linked polystyrene and poly(butyl acrylate) using a small number of residual dipolar couplings and simple geometric considerations. For apolar solutes in polystyrene and protic solutes in poly(butyl acrylate), the preferred molecular orientation does not coincide with the longest molecular axis (steric aligment). This behavior may be explained by specific π–π and hydrogen bonding interactions between solute and polymer, respectively, the latter being confirmed by molecular dynamics simulations.  相似文献   

15.
A novel method is described for rapidly calculating alignment tensors from hydrodynamic shape, required for the prediction of residual dipolar couplings in neutral aligned media. Simulations of alignment were used to show that for steric restriction at a planar surface, the alignment process is dependent on linear hydrodynamic length. However, as discussed, previous methods are not in agreement with this observation. Therefore, the method presented here is the first to provide simple, accurate predictions of the alignment tensor for neutral and dilute media, while being consistent with simulations of alignment. It provides predictions in a fraction of the time of a simulation approach, while aiding physical intuition by providing a direct link between shape and alignment. Not only is this physically gratifying, but it also permits residual dipolar couplings to be applied in demanding situations where simulations of alignment are not desirable, such as in studies of molecular dynamics.  相似文献   

16.
Characterization of the conformational ensemble of disordered proteins is highly important for understanding protein folding and aggregation mechanisms, but remains a computational and experimental challenge owing to the dynamic nature of these proteins. New observables that can provide unique insights into transient residual structures in disordered proteins are needed. Here using denatured ubiquitin as a model system, NMR solvent paramagnetic relaxation enhancement (sPRE) measurements provide an accurate and highly sensitive probe for detecting low populations of residual structure in a disordered protein. Furthermore, a new ensemble calculation approach based on sPRE restraints in conjunction with residual dipolar couplings (RDCs) and small‐angle X‐ray scattering (SAXS) is used to define the conformational ensemble of disordered proteins at atomic resolution. The approach presented should be applicable to a wide range of dynamic macromolecules.  相似文献   

17.
18.
The conformational flexibility of lactose in solution has been investigated by residual dipolar couplings (RDCs). One-bond carbon-proton and proton-proton coupling constants have been measured in two oriented media and interpreted in combination with molecular dynamics simulations (MD). Two different approaches, known as PALES (Zweckstetter et al., J. Am. Chem. Soc. 2000, 122, 3791-3792) and TRAMITE (Azurmendi et al., J. Am. Chem. Soc. 2002, 124, 2426-2427), have been used to determine the alignment tensor from a shape-induced alignment model with the oriented medium. The steric alignment of the structures from several MD trajectories has provided ensemble averaged RDCs that have been compared with the experimental ones. The obtained results reveal the almost exclusive presence of a major low energy region defined as syn-phi/syn-psi (> 97%), for which sampling occurs in a dynamic manner. This result satisfactorily agrees with that determined by standard NOE-based methods.  相似文献   

19.
A new approach for analysis of NMR parameters is proposed. The experimental data set includes scalar couplings, NOEs, and residual dipolar couplings. The method, which aims at construction of the conformational distribution function, is applied to alpha-cyclodextrin in isotropic solution and dissolved in a dilute liquid crystal. An attempt to analyze the experimental data using an average molecular conformation resulted in unacceptable errors. Our approach rests on the maximum entropy method (ME), which gives the flattest possible distribution, consistent with the experimental data. Very good agreement between experimental and calculated NMR parameters was observed. In fact, two conformational states were required in order to obtain a satisfactory agreement between calculated and experimental data. In addition, good agreement with Langevin dynamics computer simulations was obtained.  相似文献   

20.
The interpretation of residual dipolar couplings in terms of molecular properties of interest is complicated because of difficulties in separating structural and dynamic effects as well as the need to estimate alignment tensor parameters a priori. An approach is introduced here that allows many of these difficulties to be circumvented when data are acquired in multiple alignment media. The method allows the simultaneous extraction of both structural and dynamic information directly from the residual dipolar coupling data, in favorable cases even in the complete absence of prior structural knowledge. Application to the protein ubiquitin indicates greater amplitudes of internal motion than expected from traditional (15)N spin relaxation analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号