首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
A series of new donor–acceptor‐type low‐band‐gap semiconducting polymers were synthesized as electron donors for organic photovoltaic cells. The polymers comprised quinoxaline derivatives as the acceptors and a benzodithiophene (BDT) derivative as the donors. 5,8‐Dibromoquinoxaline (Qx), 8,11‐dibromobenzo[a]phenazine (BPz), 10,13‐dibromodibenzo[a,c]phenazine (DBPz), and 8,11‐dibromo‐5‐(9H‐carbazol‐9‐yl)benzo[a]phenazine) (CBPz) were synthesized and polymerized with 2,6‐bis(trimethyltin)?4,8‐diethylhexyloxybenzo‐[1,2‐b;3,4‐b]dithiophene (BDT) through Stille cross‐coupling to produce four types of fully conjugated semiconducting polymers: PBDT‐Qx, PBDT‐BPz, PBDT‐DBPz, and PBDT‐CBPz , respectively. Intramolecular charge transfer between the electron donating and accepting units in the polymeric backbone induced a broad absorption from 300 to 800 nm. The optical band gap energies of the polymers were measured from their absorption onsets to be 1.54–1.80 eV depending on the polymer structure. Solution‐processed field‐effect transistors were fabricated to measure the hole mobilities of the polymers, and bulk hetero‐junction photovoltaic devices were fabricated using the synthesized polymers as electron donors and fullerene derivatives as electron acceptors. One of these devices showed a high power conversion efficiency of 3.87% with an open‐circuit voltage of 0.78 V, a short‐circuit current of 9.68 mA/cm2, and a fill factor of 0.51 under air mass 1.5 global (AM 1.5 G) illumination conditions (100 mW/cm2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4136–4149  相似文献   

2.
Two D–π–A copolymers, based on the benzo[1,2‐b:4,5‐b′]‐dithiophene (BDT) as a donor unit and benzo‐quinoxaline (BQ) or pyrido‐quinoxaline (PQ) analog as an acceptor (PBDT‐TBQ and PBDT‐TPQ), were designed and synthesized as a p‐type material for bulk heterojunction (BHJ) photovoltaic cells. When compared with the PBDT‐TBQ polymer, PBDT‐TPQ exhibits stronger intramolecular charge transfer, showing a broad absorption coverage at the red region and narrower optical bandgap of 1.69 eV with a relatively low‐lying HOMO energy level at ?5.24 eV. The experimental data show that the exciton dissociation efficiency of PBDT‐TPQ:PC71BM blend is better than that in the PBDT‐TBQ:PC71BM blend, which can explain that the IPCE spectra of the PBDT‐TPQ‐based solar cell were higher than that of the PBDT‐TBQ‐based solar cell. The maximum efficiency of PBDT‐TPQ‐based device reaches 4.40% which is much higher than 2.45% of PBDT‐TBQ, indicating that PQ unit is a promising electron‐acceptor moiety for BHJ solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1822–1833  相似文献   

3.
A new donor–acceptor (D–A) conjugated copolymer based on benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) was synthesized via a Stille cross‐coupling reaction. A highly conjugated thiophene‐based side group, tris(thienylenevinylene) (TTV), was incorporated into each BDT unit to generate the two‐dimensional D–A copolymer (PBDT‐TTV). An alkoxy‐substituted BDT‐based TPD copolymer (PBDT‐OR) was synthesized using the same polymerization method for comparison. PBDT‐TTV thin films produced two distinct absorption peaks. The shorter wavelength absorption (458 nm) was attributed to the BDT units containing the TTV group, and the longer wavelength band (567–616 nm) was attributed to intramolecular charge transfer between the BDT donor and the TPD acceptor. The highest occupied molecular orbital energy levels of PBDT‐OR and PBDT‐TTV were calculated to be −5.53 and −5.61 eV, respectively. PBDT‐TTV thin films harvested a broad solar spectrum covering the range 300–700 nm. A comparison with the PBDT‐OR films revealed stronger interchain π–π interactions in the PBDT‐TTV films and, thus, a higher hole mobility. A polymer solar cell device prepared using PBDT‐TTV as the active layer was found to exhibit a higher power conversion efficiency than a device prepared using PBDT‐OR under AM 1.5 G (100 mW/cm2) conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 653–660  相似文献   

4.
This review covers the synthesis and polymerization of benzo[1,2‐b: 4,5‐b′]dithiophene (BDT) to generate semiconducting polymers used in organic field‐effect transistors (OFET) and organic solar cells applications.  相似文献   

5.
Pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione (DPPD)‐based large band gap polymers, P(BDT‐TDPPDT) and P(BDTT‐TDPPDT), are prepared by copolymerizing electron‐rich 4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene (BDT) or 4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) unit with novel electron deficient 2,5‐dioctyl‐4,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione (TDPPDT) unit. The absorption bands of polymers P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) cover the region from 300 to 600 nm with an optical band gap of 2.11 eV and 2.04 eV, respectively. The electrochemical study illustrates that the highest occupied/lowest unoccupied molecular orbital energy levels of P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) are ?5.39 eV/?3.28 eV and ?5.44 eV/?3.40 eV, respectively. The single layer polymer solar cell (PSC) fabricated with a device structure of ITO/PEDOT:PSS/P(BDT‐TDPPDT) or P(BDTT‐TDPPDT):PC70BM+DIO/Al offers a maximum power conversion efficiency (PCE) of 6.74% and 6.57%, respectively. The high photovoltaic parameters such as fill factor (~72%), open circuit voltage (Voc, ~0.90 V), incident photon to collected electron efficiency (~76%), and PCE obtained for the PSCs made from polymers P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) make them as promising large band gap polymeric candidates for PSC application. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3564–3574  相似文献   

6.
The postmodification of poly[9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P1 ) upon its reaction with N‐bromosuccinimide affords exclusive and full bromination of the 3,6‐positions of the carbazole repeat units to yield poly[3,6‐dibromo‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P2 ). Brominated polymer P2 can be used as a precursor for further functionalization at the 3,6‐positions with the desired functional group to afford other useful polymers. Polymer P2 has hence been reacted with copper(I) cyanide to afford poly[3,6‐dicyano‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P3 ). Full substitution of the bromide groups with nitrile‐functional groups has been achieved. The preparation and structural characterization of polymers P2 and P3 are presented together with studies on their electronic conjugation and photoluminescence properties. Cyclic voltammetry studies on polymer P3 indicate that the new polymer is easier to reduce (n‐dope) but more difficult to oxidize than its unsubstituted counterpart ( P1 ) as a result of the introduction of the electron‐withdrawing nitrile‐functional groups at the 3,6‐positions on the carbazole repeat units on the polymer chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3336–3342, 2006  相似文献   

7.
Compared with benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (BTT), an extended π‐conjugation fused ring derivative, dithieno[2,3‐d:2′,3′‐d′]benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (DTBTT) has been designed and synthesized successfully. For investigating the effect of extending conjugation, two wide‐bandgap (WBG) benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based conjugated polymers (CPs), PBDT‐DTBTT, and PBDT‐BTT, which were coupled between alkylthienyl‐substituted benzo[1,2‐b:4,5‐b′]dithiophene bistin (BDT‐TSn) and the weaker electron‐deficient dibromides DTBTTBr2 and BTTBr2 bearing alkylacyl group, were prepared. The comparison result revealed that the extending of conjugated length and enlarging of conjugated planarity in DTBTT unit endowed the polymer with a wider and stronger absorption, more ordered molecular structure, more planar and larger molecular configuration, and thus higher hole mobility in spite of raised highest occupied molecular orbital (HOMO) energy level. The best photovoltaic devices exhibited that PBDT‐DTBTT/PC71BM showed the power conversion efficiency (PCE) of 2.73% with an open‐circuit voltage (VOC) of 0.82 V, short‐circuit current density (JSC) of 6.29 mA cm?2, and fill factor (FF) of 52.45%, whereas control PBDT‐BTT/PC71BM exhibited a PCE of 1.98% under the same experimental conditions. The 38% enhanced PCE was mainly benefited from improved absorption, and enhanced hole mobility after the conjugated system was extended from BTT to DTBTT. Therefore, our results demonstrated that extending the π‐conjugated system of donor polymer backbone was an effective strategy of tuning optical electronic property and promoting the photovoltaic property in design of WBG donor materials.  相似文献   

8.
New donor–π–acceptor (D–π–A) type conjugated copolymers, poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(4‐octylthiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐tTz), and poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(6‐octylthieno[3,2‐b]thiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐ttTz) were synthesized and characterized with the aim of investigating their potential applicability to organic photovoltaic active materials. While copolymer PBDT‐tTz showed a zigzagged non‐linear structure by thiophene π‐bridges, PBDT‐ttTz had a linear molecular structure with thieno[3,2‐b]thiophene π‐bridges. The optical, electrochemical, morphological, and photovoltaic properties of PBDT‐tTz and PBDT‐ttTz were systematically investigated. Furthermore, bulk heterojunction photovoltaic devices were fabricated by using the synthesized polymers as p‐type donors and [6,6]‐phenyl‐C71‐butyric acid methyl ester as an n‐type acceptor. PBDT‐ttTz showed a high power conversion efficiency (PCE) of 5.21% as a result of the extended conjugation arising from the thienothiophene π‐bridges and enhanced molecular ordering in the film state, while PBDT‐tTz showed a relatively lower PCE of 2.92% under AM 1.5 G illumination (100 mW/cm2). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1978–1988  相似文献   

9.
A series of donor‐π‐acceptor (D‐π‐A) conjugated copolymers ( PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT ), based on benzo[1,2‐b:4,5‐c']dithiophene‐4,8‐dione (BDD) acceptor unit with benzodithiophene (BDT) or dithienosilole (DTS) as donor unit, alkylthiophene (AT) or thieno[3,2‐b]thiophene (TT) as conjugated π‐bridge, were designed and synthesized for application as donor materials in polymer solar cells (PSCs). Effects of the donor unit and π‐bridge on the optical and electrochemical properties, hole mobilities, and photovoltaic performance of the D‐π‐A copolymers were investigated. PSCs with the polymers as donor and PC70BM as acceptor exhibit an initial power conversion efficiency (PCE) of 5.46% for PBDT‐AT , 2.62% for PDTS‐AT , 0.82% for PBDT‐TT , and 2.38% for PDTS‐TT . After methanol treatment, the PCE was increased up to 5.91%, 3.06%, 1.45%, and 2.45% for PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT , respectively, with significantly increased FF. The effects of methanol treatment on the photovoltaic performance of the PSCs can be ascribed to the increased and balanced carrier transport and the formation of better nanoscaled interpenetrating network in the active layer. The results indicate that both donor unit and π‐bridge are crucial in designing a D‐π‐A copolymer for high‐performance photovoltaic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1929–1940  相似文献   

10.
A new liquid crystalline (LC) acceptor monomer 2,5‐bis[4‐(4′‐cyanobiphenyloxy)dodecyl]‐3,6‐dithiophen‐2‐yl‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione (TDPPcbp) was synthesized by incorporating cyanobiphenyl mesogens into diketopyrrolopyrrole (DPP). The monomer was copolymerized with bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′] dithiophene (BDT) and N‐9′‐heptadecanylcarbazole (CB) donors to obtain donor–acceptor alternating copolymers poly[4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐3,6‐bis(thiophen‐5‐yl)‐2,5‐bis[4‐(4′‐cyanobiphenyloxy)dodecyl]‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione] (PBDTDPPcbp) and poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐3,6‐bis(thiophen‐5‐yl)‐2,5‐bis[4‐(4′‐cyano‐biphenyloxy)dodecyl]‐2,5‐dihydropyrrolo[3, 4‐c]pyrrole‐1,4‐dione] (PCBTDPPcpb) with reduced band gap, respectively. The LC properties of the copolymers, the effects of main chain variation on molecular packing, optical properties, and energy levels were analyzed. Incorporating the mesogen cyanobiphenyl units not only help polymer donors to pack well through mesogen self‐organization but also push the fullerene acceptor to form optimized phase separation. The bulk heterojunction photovoltaicdevicesshow enhanced performance of 1.3% for PBDTDPPcbp and 1.2% for PCBTDPPcbp after thermal annealing. The results indicate that mesogen‐controlled self‐organization is an efficient approach to develop well‐defined morphology and to improve the device performance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
This review describes the synthesis and photovoltaic performance of donor–acceptor (D–A) semiconducting polymers that have been reported during the last decade. 9,9‐Dialkyl‐2,7‐ fluorene, 2,7‐carbazole, cyclopenta[2,1‐b:3,4‐b′]dithiophene, dithieno[3,2‐b:2′,3′‐d]silole, dithieno[3,2‐b:2′,3′‐d]pyrrole, benzo[1,2‐b:4,5‐b′]dithiophene, benzo[1,2 b:4,5 b′]difuran building blocks, and their D–A copolymers are described in this review. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
A novel electron‐accepting unit cyclopenta[2,1‐b:3,4‐c′]dithiophene‐4‐one (CPDTO‐c′), which is an isomer of CPDTO‐b′ was developed. CPDTO‐c′ can be incorporated into the D–A backbone through 5, 7 positions. The 2 position of CPDTO‐c′ can be easily functionalized with an electron‐withdrawing chain. By copolymerizing CPDTO‐c′ with four different donor units: benzo[1,2‐b:4,5‐b′]dithiophene (BDT), dithieno[3,2‐b:2′,3′‐d]silole (DTS), carbazole, and fluorene, four new conjugated copolymers P1 – P4 were obtained. All these polymers have good solubility and low‐lying HOMO energy levels (−5.41 ∼ −5.92 eV). Among them, P1 and P2 exhibit broad absorption and narrow optical bandgaps of 1.91 and 1.72 eV, respectively. Solar cells based on P1 /PC71BM afforded a PCE up to 2.72% and a high Voc up to ∼0.9 V.  相似文献   

13.
Two alternating medium band gap conjugated polymers (PBDT‐TPTI and PDTBDT‐TPTI) derived from 4,8‐bis(4,5‐dioctylthien‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐T) or 5,10‐bis(4,5‐didecylthien‐2‐yl)dithieno[2,3‐d:2′,3′‐d′]benzo[1,2‐b:4,5‐b′]dithiophene (DTBDT‐T) with pentacyclic aromatic lactam of N,N‐didodecylthieno[2′,3′:5,6]pyrido[3,4‐g]thieno[3,2‐c]‐iso‐quinoline‐5,11‐dione (TPTI), are synthesized and characterized. The comparative investigation of the photostabilities of the copolymers revealed that the PDTBDT‐TPTI film exhibited the comparable photostability in relative to P3HT. Meanwhile, the inverted photovoltaic cells (i‐PVCs) from the blend films of PBDT‐TPTI and/or PDTBDT‐TPTI with PC71BM, in which poly[(9,9‐bis(3′‐(N,N‐dimethylamino)propyl)‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene)] were used as cathode modifying interlayer, presented higher power conversion efficiencies (PCEs) of 5.98% and 6.05% with photocurrent response ranging from 300 nm to 650 nm in contrast with the PCEs of 4.48% for the optimal inverted PVCs from P3HT/PC71BM under AM 1.5 G 100 mW/cm2. The PCEs of the i‐PVCs from PBDT‐TPTI and PDTBDT‐TPTI were improved to 7.58% and 6.91% in contrast to that of 0.02% for the P3HT‐based i‐PVCs, and the photocurrent responses of the devices were extended to 300–792 nm, when the ITIC was used as electron acceptor materials. The results indicate that the PBDT‐TPTI and PDTBDT‐TPTI can be used as the promising alternatives of notable P3HT in the photovoltaic application. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 85–95  相似文献   

14.
Six alternating conjugated copolymers ( PL1 – PL6 ) of benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thiophene, containing electron‐withdrawing oxadiazole (OXD), ester, or alkyl as side chains, were synthesized by Stille coupling reaction. The structures of the polymers were confirmed, and their thermal, optical, electrochemical, and photovoltaic properties were investigated. The introduction of conjugated electron‐withdrawing OXD or formate ester side chain benefits to decrease the bandgaps of the polymers and improve the photovoltaic performance due to the low steric hindrance of BDT. Bulk heterojunction polymer solar cells (PSCs) were fabricated based on the blend of the as‐synthesized polymers and the fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) in a 1:2 weight ratio. The maximum power conversion efficiency of 2.06% was obtained for PL5 ‐based PSC under the illumination of AM 1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The synthesis of conjugated polymers 1 – 5 functionalized with 4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione in the backbone is reported and their use in the construction of organic solar cells is demonstrated. Increasing the molar ratio of 2,7‐dibromo‐3,8‐dihexyl‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione, relative to 4,4′‐dihexyl‐5,5′‐dibromo‐2,2′‐bithiophene, in the copolymer synthesis significantly lowers the solubility of these polymers. The incorporation of highly conjugated 3,8‐dihexyl‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione unit into the polymer backbone has been confirmed by UV–vis absorption. The observation of decreasing quantum yield for the emission in the order of 1 , 2 , 3 is consistent with copolymers with different comonomer content. The power conversion efficiencies of solar cells using blends of these polymers with PCBM ([6,6]‐phenyl C61‐butyric acid methyl ester) were determined to be 0.11% for polymer 1 , 0.33% for 2 , and 0.26% for 3 , respectively. Under identical white light illumination, the power conversion efficiency of the device based on polymer 2 /PCBM as the active layer was three times higher compared to that of device based on polymer 1 /PCBM. Owing to the limited solubility and poor film‐forming ability of polymer 3 , the power conversion efficiency of solar cell based on 3 /PCBM blend is lower than that of 2 /PCBM blend, but is still larger than that of 1 /PCBM blend. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2680–2688, 2008  相似文献   

16.
A “zigzag” naphthodithiophene‐based copolymer, poly[4,9‐bis(2‐ethylhexyloxy)naphtho[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl‐alt‐1,3‐(5‐heptadecan‐9‐yl)‐4H‐thieno[3,4‐c]pyrrole‐4,6‐dione] (P1) is synthesized and its properties are compared to “linear” naphthodithiophene‐based copolymer, poly[4,9‐bis(2‐ethylhexyloxy)naphtho[2,3‐b:6,7‐d′]dithiophene‐2,7‐diyl‐alt‐1,3‐(5‐heptadecan‐9‐yl)‐4H‐thieno[3,4‐c]pyrrole‐4,6‐dione] (P2). The field‐effect carrier mobilities and the optical, electrochemical, and photovoltaic properties of the copolymers are systematically investigated. The results suggest that the backbone of the copolymer structure significantly influences the band gap, electronic energy levels, carrier mobilities, and photovoltaic properties of the resultant thin films. In this work, the zigzag naphtho[1,2‐b:5,6‐b′]dithiophene‐based copolymer displays a good hole mobility and a high open‐circuit voltage; however, polymer solar cells in which the linear naphtho[2,3‐b;6,7‐d′]dithiophene‐based copolymer is used as the electron donor material perform better than the cells prepared using the zigzag naphtho[1,2‐b:5,6‐b′]dithiophene‐based copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 305–312  相似文献   

17.
The synthesis and characterization of building block of ethynylene‐substituted benzo[1,2‐b:4,5‐b′]dithiophene (BDT), and its application in the construction of poly(aryleneethynylene)s (PAEs) are described in this article. Alkoxy‐substituted BDT and thiazolothiazole are selected as the other copolymerized units, and polymers of PEBBDT and PEBTTZ were synthesized by Pd‐catalyzed Sonogashira coupling reaction. These polymers showed intense interchain π–π interaction and deep HOMO levels (≤ ?5.50 eV). Bulk heterojunction solar cell fabricated using PEBBDT or PEBTTZ as electron donor and PC61BM as acceptor display power conversion efficiency of 0.85 and 2.40%, respectively, under the illumination of AM1.5G, 100 mW cm?2. This study shows good prospect for the application of PAEs‐type polymers in organic solar cell. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 208–215  相似文献   

18.
Polymers using new electron‐deficient units, 2‐pyriminecarbonitrile and 2‐fluoropyrimidine, were synthesized and utilized for the photovoltaics. Donor‐acceptor (D‐A) types of conjugated polymers ( PBDTCN, PBDTTCN, PBDTF, and PBDTTF ) containing 4,8‐bis(2‐octyldodecyloxy)benzo[1,2‐b;3,4‐b′]dithiophene (BDT) or 4,8‐bis(5‐(2‐octyldodecyloxy)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) as electron rich unit and 2‐pyriminecarbonitrile or 2‐fluoropyrimidine as electron deficient unit were synthesized. We designed pyrimidine derivatives in which strong electron‐withdrawing group (C?N or fluorine) was introduced to the C2 position for the generation of strong electron‐deficient property. By the combination with the electron‐rich unit, the pyrimidines will provide low band gap polymers with low highest occupied molecular orbital (HOMO) energy levels for higher open‐circuit voltages (VOC). For the syntheses of the polymers, the electron‐rich and the electron‐deficient units were combined by Stille coupling reaction with Pd(0)‐catalyst. Absorption spectra of the thin films of PBDTTCN and PBDTTF with BDTT unit show shift to a longer wavelength region than PBDTCN and PBDTF with BDT unit. Four synthesized polymers provided low electrochemical bandgaps of 1.56 to 1.96 eV and deep HOMO energy levels between ?5.67 and ?5.14 eV. © 2015 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 771–784  相似文献   

19.
New donor–acceptor conjugated copolymers based on alkylthienylbenzodithiophene (BDTT) and alkoxynaphthodithiophene (NDT) have been synthesized and compared with their benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based analogues to investigate the effect of the extended π conjugation of the polymer main chain on the physicochemical properties of the polymers. A systematic investigation into the optical properties, energy levels, field‐effect transistor characteristics, and photovoltaic characteristics of these polymers was conducted. Both polymers demonstrated enhanced photovoltaic performance and increased hole mobility compared with the BDT‐based analogue. However, the BDTT‐based polymer (with π‐conjugation extension perpendicular to main chain) gave the highest power conversion efficiency of 5.07 % for the single‐junction polymer solar cell, whereas the NDT‐based polymer (with π‐conjugation extension along the main chain) achieved the highest hole mobility of approximately 0.1 cm2 V?1 s?1 based on the field‐effect transistor; this indicated that extending the π conjugation in different orientations would have a significant influence on the properties of the resulting polymers.  相似文献   

20.
Recently, we have used terthiophene side chain to modify benzo[1,2‐b:4,5‐b′]dithiophene (BDT) to form novel building block for BDT polymers. In this paper, this building block is used to copolymerized with thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) and thieno[3,4‐b]thiophene (TT). This building block and TPD‐ or TT‐based polymers (P1 and P3) show high open circuit voltage (VOC) (ca. 0.9–0.95 V) and low energy loss (Eg–eVOC) in solar cells devices compared with similar polymers without bulky side chain. We further introduce thiophene π bridge into these polymers backbone to form two other polymers (P2 and P4). We find this thiophene π bridge does contribute to this bulky side chained benzodithiophene polymer photovoltaic performances, especially for power conversion efficiencies (PCEs). The polymer solar cells (PSCs) performances are moderate in this article due to the serious aggregation in the PSCs active layer. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1615–1622  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号