首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
For spectral imaging of chemical distributions using X‐ray absorption near‐edge structure (XANES) spectra, a modified double‐crystal monochromator, a focusing plane mirrors system and a newly developed fluorescence‐type X‐ray beam‐position monitoring and feedback system have been implemented. This major hardware upgrade provides a sufficiently stable X‐ray source during energy scanning of more than hundreds of eV for acquisition of reliable XANES spectra in two‐dimensional and three‐dimensional images. In recent pilot studies discussed in this paper, heavy‐metal uptake by plant roots in vivo and iron's phase distribution in the lithium–iron–phosphate cathode of a lithium‐ion battery have been imaged. Also, the spatial resolution of computed tomography has been improved from 70 nm to 55 nm by means of run‐out correction and application of a reconstruction algorithm.  相似文献   

3.
BODIPY (4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene) is an emissive chromophore in solutions but suffers from fluorescence quenching when aggregated due to its flat molecular conformation and small Stokes shift. To create aggregate‐state emissive BODIPY luminogens, tetraphenylethene (TPE), which is a popular luminogen with intriguing aggregation‐induced emission (AIE) characteristic, is introduced as periphery to a methylated BODIPY core. Three TPE‐BODIPY adducts are synthesized and characterized, and their photophysical properties and electronic structures are investigated. The incorporation of AIE‐active TPE units alleviates aggregation‐caused quenching of BODIPY core, furnishing emissive nanoparticles based on TPE‐BODIPY adducts. Significantly, the two‐photon absorption (TPA) and two‐photon excited fluorescence (TPEF) properties are improved as more TPE units are attached. The luminogens with 3TPE units (3TPE‐BODIPY) shows the strongest TPA and TPEF in the wavelength range of 750–830 nm, with cross‐section values of 264 and 116 GM at 810 nm, respectively. Red emissive nanoparticles with a Stokes shift of 60 nm and a fluorescence quantum yield of 16% are attained by encapsulating 3TPE‐BODIPY with 1,2‐sistearoyl‐sn‐glycero‐3‐phosphoethanolamine‐N‐[methoxy(polyethylene glycol)‐2000]. The nanoparticles are biocompatible and function well in TPEF cellular imaging and mouse brain blood vascular visualization.  相似文献   

4.
5.
A time‐resolved intensified charge coupled device‐based Raman microspectrometer system dedicated to the study of solid samples is described, offering good optical, temporal and spatial resolution. The advantages of this approach are demonstrated on Al2O3:Cr3+, obtaining for the first time the temporal evolution of the excited state transition Ē → 2Ā. Moreover, the time dependence of the luminescence due to the chromium ion was also determined by the same Raman device. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The spatial resolution in optical imaging is restricted by so‐called diffraction limit, which prevents it to be better than about half of the wavelength of the probing light. Tip‐enhanced Raman spectroscopy (TERS), which is based on the SPP‐induced plasmonic enhancement and confinement of light near a metallic nanostructure, can however, overcome this barrier and produce optical images far beyond the diffraction limit. Here in this article, the basic phenomenon involved in TERS is reviewed, and the high spatial resolution achieved in optical imaging through this technique is discussed. Further, it is shown that when TERS is combined with some other physical phenomena, the spatial resolution can be dramatically improved. Particularly, by including tip‐applied extremely localized pressure in TERS process, it has been demonstrated that a spatial resolution as high as 4 nm could be achieved.  相似文献   

8.
9.
Recently, a radically new synchrotron radiation‐based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non‐contact laser‐based sample manipulation with synchrotron radiation confocal X‐ray fluorescence (XRF) microimaging for the first time at ESRF‐ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF‐related challenges are reported. In general, the applicability of the OT‐based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi‐elemental analysis is of relevance at the (sub)micrometre spatial resolution level.  相似文献   

10.
Biocompatible, near‐infrared luminescent gold nanoclusters (AuNCs) are synthesized directly in water using poly(ethylene glycol)‐dithiolane ligands terminating in either a carboxyl, amine, azide, or methoxy group. The ≈1.5 nm diameter AuNCs fluoresce at ≈820 nm with quantum yields that range from 4–8%, depending on the terminal functional group present, and display average luminescence lifetimes approaching 1.5 μs. The two‐photon absorption (TPA) cross‐section and two‐photon excited fluorescence (TPEF) properties are also measured. Long‐term testing shows the poly(ethylene glycol) stabilized AuNCs maintain colloidal stability in a variety of media ranging from saline to tissue culture growth medium along with tolerating storage of up to 2 years. DNA and dye‐conjugation reactions confirm that the carboxyl, amine, and azide groups can be utilized on the AuNCs for carbodiimide, succinimidyl ester, and CuI‐assisted cycloaddition chemistry, respectively. High signal‐to‐noise one‐ and two‐photon cellular imaging is demonstrated. The AuNCs exhibit outstanding photophysical stability during continuous‐extended imaging. Concomitant cellular viability testing shows that the AuNCs also elicit minimal cytotoxicity. Further biological applications for these luminescent nanoclustered materials are discussed.  相似文献   

11.
A comparative study of the optical properties of organic fluorescent nanoparticles fabricated by laser ablation (NPs‐LA), reprecipitation (NPs‐RP), and microemulsion (NPs‐ME) methods is presented. These nanoparticles contain a fluorene‐based p‐conjugated molecule (BT2). Distinctive electronic transitions are observed in samples due to the specific way in which the molecule BT2 is assembled in each type of nanoparticles; for instance, transitions involved in absorption and emission spectra of NPs‐LA result in blueshifting with respect to the molecular solution of BT2, whereas redshifting is observed in NPs‐RP and NPs‐ME. Further, the results show that under infrared excitation, the aqueous suspensions of NPs‐LA exhibit the highest fluorescence induced by two‐photon absorption (≈790 GM at 740 nm), as well as the best photostability, compared with aqueous suspensions of NPs‐RP and NPs‐ME. The nanoparticles synthetized by the three aforementioned methods are employed as exogenous agents for the visualization of human cervical cancer cell line (HeLa) using confocal and two‐photon microscopy. Under similar experimental conditions, it is found that microscopy images of the best quality are obtained with NPs‐LA. These results show that laser ablation is a suitable technique for the fabrication of organic fluorescent nanoparticles used as contrast agents for in vitro fluorescence microscopy.  相似文献   

12.
Zero‐dimensional fluorescent carbon dots (CDs) that are used as a cell‐imaging reagent are prepared by using a simple and effective route employing lithium‐intercalated graphite from lithium‐ion batteries as a carbon source. Under ultrasonic exfoliation, the interlayer space increases, while the layer distortion and remaining lithium of the lithium‐intercalated graphite are utilized to disrupt the graphitic structure and produce the CD suspension. Subsequently, after concentration and purification, the obtained colloidal CD suspension has a fluorescent yield of up to 1.2% and is therefore comparable to the CDs prepared in previous reports. These CD products are water‐soluble, nanosized (approximately 3.5 nm), and biocompatible and can easily enter into HeLa cells to act as a cell‐imaging reagent without any further functionalization. In addition, these CDs do not impose toxicity against HeLa cells and have high photostability with low photobleaching and demonstrate potential applications for bio‐labeling as well as solution state optoelectronics.  相似文献   

13.
A novel setup for containment‐free time‐resolved experiments at a free‐hanging drop is reported. Within a dead‐time of 100 ms a drop of mixed reactant solutions is formed and the time evolution of a reaction can be followed from thereon by various techniques. As an example, a small‐angle X‐ray scattering study on the formation mechanism of EDTA‐stabilized CdS both at a synchrotron and a laboratory X‐ray source is presented here. While the evolution can be followed with one drop only at a synchrotron source, a stroboscopic mode with many drops is preferable for the laboratory source.  相似文献   

14.
15.
Benefiting from the natural nano‐size graphene‐structure in natural asphaltene material, a facile one‐pot route, mild chemical oxidation of low‐value petroleum asphaltene followed by routine ammonium neutralization, is presented to produce high quality graphene quantum dots (GQDs). The asphaltene‐derived GQDs possess a variety of oxygen‐containing and nitrogen‐containing functional groups such as carboxyl, hydroxyl, amine, and nitro groups. They present such excellent fluorescence properties as stable ability to retain strong green fluorescence within a relative broad excitation range in a bio‐suitable pH range of 4–7, high photoluminescence quantum yield of 18% and good fluorescent stability against photobleaching. And they are much smaller and thinner than most reported GQDs, displaying good biocompatibility with low cytotoxicity, effective cellular uptake, and excellent fluorescent probe performance for cancer cell imaging.  相似文献   

16.
Using our custom‐made diffraction apparatus KOTOBUKI‐1 and two multiport CCD detectors, cryogenic coherent X‐ray diffraction imaging experiments have been undertaken at the SPring‐8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user‐friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI‐1, loading a flash‐cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI‐1, adjusting the sample position with respect to the X‐ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X‐ray pulses. Named G‐SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user‐friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.  相似文献   

17.
This report describes the development of a facile method for the synthesis of cross‐linked proteins with gold nanoclusters (CP‐GNC). The synthesis reaction is completed within 15 min at 97 °C. The synthesized CP‐GNC are characterized by using UV–vis absorption, fluorescence, X‐ray photoelectron spectroscopy, and transmission electron microscopy. CP‐GNC are approximately 100 nm in diameter and 700 nm in length, whereas AuNCs within the nanorods are approximately 6 nm in size. These materials are highly fluorescent with quantum yield of 7.2% and can be absorbed onto and release from bacterial cells in a pH‐dependent and reversible manner. The recent data show that CP‐GNC can be a useful, new tool with potential applications in fluorescent cell imaging and antibiotic targeting.  相似文献   

18.
Optical and optoelectronic techniques for micro‐ and nano‐object manipulation are becoming essential tools in nano‐ and biotechnology. Among optoelectronic manipulation platforms, photovoltaic optoelectronic tweezers (PVOTs) are an emergent technique that are particularly successful at producing permanent nanoparticle microstructures. New strategies to enhance the capabilities of PVOT, based on real‐time operation, are investigated. This optoelectronic platform uses z‐cut LiNbO3:Fe substrates under excitation by a Gaussian light beam. Unexpected results show that during illumination, metallic particles previously deposited on the substrate are ejected from the light spot region. This behavior differs from the trapping phenomenon observed in previous work on PVOT operation, using a sequential method in which illumination is prior to particle manipulation. To discuss the results, a novel mechanism of charge exchange between particles and the ferroelectric substrate is proposed. Applications of this repulsion behavior are investigated. On the one hand, either particle repulsion or trapping in the illuminated region can be obtained by simply light switching on/off. On the other hand, by moving the light spot, different kinds of arbitrarily shaped tracks along the light path, either empty or filled with particles, are obtained. The results demonstrate new key capabilities of PVOT, such as pattern drawing, erasure, and reconfiguration.  相似文献   

19.
X‐ray absorption fine‐structure (XAFS) data were obtained for the V K‐edge for a series of anisotropic single crystals of (CrxV1–x)2O3. The data and the results were compared for the as‐prepared bulk single crystals (measured in fluorescence in two different orientations) and those ground to powder (measured in transmission). For the bulk single crystals, the glancing‐emergent‐angle (GEA) method was used to minimize fluorescence distortion. The reliability of the GEA technique was tested by comparing the polarization‐weighted single‐crystal XAFS data with the experimental powder data. These data were found to be in excellent agreement throughout the entire energy range. Thus, it was possible to reliably measure individual V–V contributions parallel and perpendicular to the c axis of the single crystals, i.e. those unavailable by powder data XAFS analysis. These experiments demonstrate that GEA is a premiere method for non‐destructive high‐photon‐count in situ studies of local structure in bulk single crystals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号