首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 760 毫秒
1.
The interphase layer in semi‐crystalline polyethylene is the least known constituent, compared to the amorphous and crystalline phases, in terms of mechanical properties. In this study, the Monte Carlo molecular simulation results for the interlamellar domain (i.e. amorphous+ interphases), reported in (Macromolecules 2006, 39, 439–447) are employed. The amorphous elastic properties are adopted from the literature and then two distinct micromechanical homogenization approaches are utilized to dissociate the interphase stiffness from that of the interlamellar region. The results of the two micromechanical approaches match perfectly. Interestingly, the dissociated interphase stiffness lacks the common feature of positive definiteness, which is attributed to its nature as a transitional domain between two coexisting phases. The sensitivity analyses reveal that this property is insensitive to the non‐orthotropic components of the interlamellar stiffness and the uncertainties existing in the interlamellar and amorphous stiffnesses. Finally, using the dissociated interphase stiffness, its effective Young's modulus is calculated, which compares well with the effective interlamellar Young's modulus for highly crystalline polyethylene, reported in an experimental study. This satisfactory agreement along with the identical results produced by the two micromechanical approaches confirms the validity of the new information about the interphase elastic properties in addition to making the proposed dissociation methodology quite reliable when applied to similar problems. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1228–1243  相似文献   

2.
The quintessential form of cellulose in wood consists of microfibrils that have high aspect ratio crystalline domains embedded within an amorphous cellulose domain. In this study, we apply united-atom molecular dynamics simulations to quantify changes in different morphologies of cellulose. We compare the structure of crystalline cellulose with paracrystalline and amorphous phases that are both obtained by high temperature equilibration followed by quenching at room temperature. Our study reveals that the paracrystalline phase may be an intermediate, kinetically arrested phase formed upon amorphisation of crystalline cellulose. The quenched structures yield isotropic amorphous polymer domains consistent with experimental results, thereby validating a new computational protocol for achieving amorphous cellulose structure. The non-crystalline cellulose compared to crystalline structure is characterized by a dramatic decrease in elastic modulus, thermal expansion coefficient, bond energies, and number of hydrogen bonds. Analysis of the lattice parameters shows that Iβ cellulose undergoes a phase transition into high-temperature phase in the range of 450–550 K. The mechanisms of the phase transition elucidated here present an atomistic view of the temperature dependent dynamic structure and mechanical properties of cellulose. The paracrystalline state of cellulose exhibits intermediate mechanical properties, between crystalline and amorphous phases, that can be assigned to the physical properties of the interphase regions between crystalline and amorphous cellulose in wood microfibrils. Our results suggest an atomistic structural view of amorphous cellulose which is consistent with experimental data available up to date and provide a basis for future multi-scale models for wood microfibrils and all-cellulose nanocomposites.  相似文献   

3.
We examine the crystallization and chain conformation behavior of semicrystalline poly(ethylene oxide) (PEO) and amorphous poly(vinyl acetate) (PVAc) mixtures with wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering (SAXS), and small‐angle neutron scattering (SANS) experiments. For blends with PEO weight fractions (wtPEO) greater than or equal to 0.3, below the melting point of PEO, the WAXD patterns reveal that crystalline PEO belongs to the monoclinic system. The unit‐cell parameters are independent of wtPEO. However, the bulk crystallinity determined from WAXD decreases as wtPEO decreases. The scattered intensities from SAXS experiments show that the systems form an ordered crystalline/amorphous lamellar structure. In a combination of WAXD and SAXS analysis, the related morphological parameters are assigned correctly. With the addition of amorphous PVAc, both the average amorphous layer thickness and long spacing increase, whereas the average crystalline layer thickness decreases. We find that a two‐phase analysis of the correlation function from SAXS, in which the scattering invariant is linearly proportional to the volume fraction of lamellar stacks, describes quantitatively the crystallization behavior of PEO in the presence of PVAc. When wtPEO is close to 1, the samples are fully spaced‐filled with lamellar stacks. As wtPEO decreases from 1.0 to 0.3, more PVAc chains are excluded from the interlamellar region into the interfibrillar region. The fraction outside the lamellar stacks, which is completely occupied with PVAc chains, increases from 0 to 58%. Because the radius of gyration of PVAc with a random‐coil configuration determined from SANS is smaller than the average amorphous layer thickness from SAXS, we believe that the amorphous PVAc chains still persist with a random‐coil configuration even when the blends form an ordered structure. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2705–2715, 2001  相似文献   

4.
Two‐dimensional time‐domain 1H NMR was used to investigate annealed isotactic polypropylene in the solid phase. The spin–lattice relaxation in the laboratory frame and in the rotating frame were correlated with the shape of the free induction decay to identify and characterize relaxation components over the temperature range −120 to 120 °C. Several phase transitions were observed, and three distinct solid phases, with different chain mobilities, were detected. Two of these phases were identified as regions with different mobilities within the crystalline phase. The third phase was characterized by a high degree of isotropy in molecular motion. This phase, identified as the amorphous phase, appeared as the polymer was heated above a low‐temperature (−45 °C) phase transition. All transitions observed at higher temperatures occurred exclusively in this phase. About one‐third of the polymer chains reside between crystalline lamellae, whereas the majority form amorphous regions outside fibrils of multilamellar structure. Furthermore, the glass‐to‐rubber transition, occurring above −15 °C, consists of three stages. During the first stage, between −15 °C and 15 °C, regions with an increased segment mobility (labeled intermediate phase) appear gradually within the amorphous phase. At 15 °C, the intermediate phase consists of ∼10% of the polymer units, or one‐third of the polymer units constituting the amorphous phase. Between 15 °C and 25 °C, the intermediate phase increases rapidly to 18%. This is associated with the appearance of semiliquid and liquid regions, likely within the intermediate phase. Polymer chain segments (and possibly entire chains) involved in the liquidlike phases exhibit heterogeneous molecular motion with a correlation frequency higher than 106 Hz. These two stages of glass‐to‐rubber transition occur within amorphous regions outside multilamellar structures. The third stage of the glass transition, appearing above 70 °C, is associated with the upper glass transition and occurs within the interlamellar amorphous phase. Finally, on a timescale of 100 ms or less, spin diffusion does not couple the amorphous regions outside fibrils with crystalline and amorphous regions within multilamellar fibrils. However, on a timescale of hundreds of milliseconds to seconds, all different regions within isotactic polypropylene are partially coupled. It is proposed that the relative magnitude of the crystalline magnetization, as observed in the T experiment, is a good measure of polymer crystallinity. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2487–2506, 2000  相似文献   

5.
With laser scanning confocal fluorescence microscopy, we demonstrate a novel type of morphology evolution in moderately thick films (70–100 μm) of ternary blends of polypropylene (PP), polyethylene (PE), and ethylene–propylene rubber (EPR), in which EPR is labeled with a benzothioxanthene dye (HY‐EPR). The blends are prepared by solution blending, and the phase morphology evolves during the annealing of the blend films in a stainless steel mold. Our results indicate that wetting of the mold surface is a driving force in morphology evolution for the two blend compositions investigated. For 81/14/5 PP/PE/HY‐EPR, phase evolution within the mold results in a laminar structure and hydrodynamic channels, features which have previously been found in thin films of polymer blends as a result of surface‐directed spinodal decomposition. In a blend with a lower weight fraction of the dispersed phase (92/7/1 PP/PE/HY‐EPR), we find that the PE/HY‐EPR domains are larger and more polydisperse closer to the surface because of wetting of the mold wall. We also show that the phase morphology in these films can be controlled by the nature of one or both of the surfaces being varied. When one of the mold surfaces is replaced with a thin film of PP homopolymer, we observe draining of PE/HY‐EPR from the PP to the mold surface, which results in a bilayer structure. A trilayer morphology is likewise obtained by the replacement of both mold surfaces with PP. We also carry out three‐dimensional image reconstruction on a single PE/HY‐EPR particle within the 81/14/5 PP/PE/HY‐EPR blend to obtain detailed information on the interphase structure. We find that HY‐EPR of this composition (30/70 ethylene/propylene) fully coats the PE dispersed phase and partially penetrates the PE droplets. This result falls between the interphase structures found for previously investigated EPR compositions (40/60 and 80/20 ethylene/propylene). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 637–654, 2003  相似文献   

6.
We report small‐angle neutron scattering studies of grafted copolymer films of perfluorinated poly(ethylene propylene), FEP, base polymer and polystyrene, PS, grafted blocks. The films show highly anisotropic scattering patterns, revealing nematic‐like ordering of the crystalline domain structure as a consequence of the processing conditions. Upon grafting, the styrene swells the amorphous domains in the copolymer formation. For styrene content beyond roughly 15%, the amorphous regimes increase on the cost of crystalline domains. To stabilize the rather well‐defined domain structure already given by the original FEP base material, the samples need to be cross‐linked. Without cross‐linking, the nanometer length scale domains vanish, and some large scale structure takes over, likely driven by the immiscibility between FEP and PS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1660–1668, 2008  相似文献   

7.
Shortly after processing, Polyethylene/Polypropylene (PE/PP) multilayer films demonstrate an increase in tensile modulus and other mechanical properties when the individual layer thickness is below 0.5 µm. Subsequent annealing at 60 °C for 16 h brings the properties of all other samples to similar values. WAXD characterization of the layered films identified a prevalence of mesophase in the thicker PP layers. In samples with increased layer numerosity or subjected to annealing, WAXD detected its conversion to α crystalline phase that correlates with improved mechanical properties. SSNMR and DSC detailed the defective nature of α iPP crystallites. Comonomers, detected by NMR in the commercial polymers used for the films, are the source of “tunable disorder” that dictates the formation of the PP mesophase and the low temperature of conversion to the mechanically stronger defective α phase. Soft intrafilm layer interfaces instead enable nucleation and localized polymer chain rearrangement even without annealing. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 520–531  相似文献   

8.
Novel exfoliated polyethylene (PE)/palygorskite nanocomposites prepared by in situ polymerization are characterized by solid‐state nuclear magnetic resonance (NMR). The phase structure and molecular mobility are investigated by a combination of proton and carbon NMR. The results showed that incorporation of small amounts of palygorskite had great influence on the phase structure and molecular mobility. The incorporated palygorskite hindered the crystallization process and introduced motion‐hindered chains in the NMR crystalline and amorphous phase. 13C cross‐polarization and magic‐angle spinning NMR revealed two orthorhombic crystalline phase with different line‐width. The chain mobility of orthorhombic crystalline phase with broad resonance line is obviously hindered compared with the phase with narrow resonance line when the filler is introduced. Additionally, the results of pulsed field gradient NMR technique show those the tortuosities in the nanocomposites are much higher than that in the bulk PE. The self‐diffusion process of probe molecules is also influenced by the palygorksite load. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1363–1371, 2010  相似文献   

9.
10.
The influence of aluminum borate whiskers upon the morphology of polyamide 6 was studied by wide-angle X-ray scattering and by differential scanning calorimetry. The whiskers did not promote the formation of either the hexagonal γ or the monoclinic β crystalline phase. A new experimental procedure has been devised for the production of very thin polymer layers on the whiskers. In the procedure, styrene co-acrylonitrile polymer is used as a processing aid and is later extracted. The procedure allows for the generation of polyamide layers less than 30 nm thick. Crystallinity in these thin layers was suppressed. An expression has been developed to characterize the crystallinity gradient in the interphase of the whisker surface. The equation shows that the initial 1.4 nm of polymer is fully amorphous and produces excellent evaluations of the crystallinity gradient to layer thicknesses of 70 nm. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2457–2464, 1997  相似文献   

11.
Model polypropylene and polypropylene/low molecular weight modifier systems with identical crystalline structure but of different physical state of noncrystalline regions were analyzed. The deformation of reference material was accompanied by a cavitation phenomenon while the deformation of the polypropylene/modifier systems occurred in non‐cavitating manner. Based on X‐ray and PALS measurements the observed change of the intensity of the cavitation phenomenon during the deformation of the analyzed systems was explained. Additionally, the change of interlamellar distance (induced by introducing the modifier molecules and uniaxial stretching) was correlated with the change of average size of the free volume pores of the amorphous phase—this analysis was performed based on experimental data and theoretical estimations. It was proven that the presence of modifier reduce significantly the average size of free volume pores in relation to the system with similar interlamellar distance. Finally, the method enabling specifying the effective content of the modifier in interlamellar regions based on PALS measurements and the observed change of the value of long period was presented. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 531–543  相似文献   

12.
Positron lifetime measurements, performed in the temperature range 80–300 K, are reported for polyethylene (PE) and polytetrafluoroethylene (PTFE). The lifetime spectra have been analyzed using the data processing routines LIFSPECFIT and MELT. Two long-lived components appear, which are attributed to pick-off annihilation of ortho-positronium in crystalline regions and at holes in the amorphous phase. The ortho-positronium lifetimes, τ3 and τ4, are used to estimate the crystalline packing density and the size of local free volumes in the crystalline and amorphous phases. The interstitial free volume in the crystals exhibits a weak linear increase with the temperature which is attributed to thermal expansion of the crystal unit cell. In the amorphous phase, the hole volume varies between 0.053 and 0.188 nm3 (PE) and between 0.152 and 0.372 nm3 (PTFE). Its temperature variation may be fitted by two straight lines, the intersection of which is used to estimate a glass transition temperature of Tg = 195 K for both PE and PTFE. The slopes of the free volume in the glassy and crystalline phases with the temperature correlate well with each other. The coefficients of thermal expansion of the hole volume are compared with the macroscopic volume change below and above the glass transition. From this comparison a fractional hole volume at Tg of 4.5 (PE) and 5.7% (PTFE) and a number of 0.73 (PE) and 0.36 (PTFE) × 1027 holes/m3 is estimated. Finally, it is found that the intensity of o-Ps annihilation in crystals shows a different temperature dependence to that in the amorphous phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1513–1528, 1998  相似文献   

13.
Metallocene catalyst based polyethylene‐co‐7‐octenyldimethyl phenyl silane (PE/Si? Ph ) and its post‐treated functional forms PE/Si? X ( X = Cl , F , OCH3 , OCH2CH3 ) were used as additives in PE/ATH composites. The impact strength of the composites was significantly increased after a small addition (0.5–3.0 wt %) of the functionalized form of the copolymer (PE/Si? X ). The thermal study of the composites gave us more information about the additive's behavior at the filler/matrix interphase and correlation to the mechanical properties was found. According to this thermal data, the original untreated form of PE/Si? Ph also seemed to interact weakly with the ATH‐filler particles, which was seen in an altered interphase at the filler/matrix boundary layer. The interaction was not strong enough to improve the impact strength of composites but an increase was observed in some other mechanical properties (tensile stress, yield strain). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5597–5608, 2005  相似文献   

14.
Structural (X‐ray diffraction), melting (differential scanning calorimetry), as well as mechanical (tensile tests) characterizations on uncrosslinked ethene–propene copolymer samples, obtained using a metallocene‐based catalytic system and having an ethene content in the range 80–50% by mol, are reported. Samples with an ethene content in the range 80–60% by mol present a disordered pseudohexagonal crystalline phase, whose melting moves from ≈ 40°C down to ≈ −20°C as the ethene content is reduced. The dramatic influence of the crystalline phase on tensile properties of uncrosslinked ethene–propene copolymers is shown. In particular, highest elongation at break values are obtained for samples being essentially amorphous in the unstretched state and partially crystallizing under stretching. On the other hand, lowest tension set values (most elastic behavior) are observed for samples presenting, already in the unstretched state, microcrystalline domains acting as physical crosslinks in a prevailing amorphous phase. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1095–1103, 1999  相似文献   

15.
The mechanical performance of semicrystalline polymers is strongly dependent on their underlying microstructure, consisting of crystallographic lamellae and amorphous layers. In line with that, semicrystalline polymers have previously been modeled as two and three‐phase composites, consisting of a crystalline and an amorphous phase and, in case of the three‐phase composite, a rigid‐amorphous phase between the other two, having a somewhat ordered structure and a constant thickness. In this work, the ability of two‐phase and three‐phase composite models to predict the elastic modulus of semicrystalline polymers is investigated. The three‐phase model incorporates an internal length scale through crystalline lamellar and interphase thicknesses, whereas no length scales are included in the two‐phase model. Using linear elastic behavior for the constituent phases, a closed form solution for the average stiffness of the inclusion is obtained. A hybrid inclusion interaction model has been used to compute the effective elastic properties of polyethylene. The model results are compared with experimental data to assess the capabilities of the two‐ or three‐phase composite inclusion model. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

16.
A fundamental microstructural model was developed to calculate the stress–strain curves of rubbery amorphous polymers and of semicrystalline polymers with a rubbery amorphous phase by numerical simulations. The rubbery amorphous phase was treated by using a version of the theory of rubber elasticity with finite extensibility. Physical entanglements and chemical crosslinks were both allowed. Slippage was implemented by a Monte Carlo algorithm controlled by kinetic parameters such as the activation energy and activation volume for slippage. The crystalline phase was treated in a very idealized manner, including a crude representation of tie chains but not taking the internal structure of the crystallites into account. A two-dimensional embodiment of the model was implemented into software. For amorphous polymers, while lacking truly quantitative accuracy, the model showed sufficiently good agreement with the experimental trends to be used as a qualitative or semiquantitative predictive tool, and it is currently being used in this manner. The more complex semicrystalline version was less accurate and will need to be improved in future work. Most of the limitations of the semicrystalline version could be ascribed unambiguously to specific simplifications made in the software implementation to reduce the amount of computer time required for the calculations. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2715–2739, 1997  相似文献   

17.
Structure–property relations of cationically polymerized epoxy thermosets with different morphologies are examined. The morphology adjustment of amorphous epoxy based copolymers and partially crystalline polymer alloys is carried out with star‐shaped poly(ε‐caprolactone) (SPCL) bearing various numbers of hydroxyl end groups. These hydroxyl groups are known for their reactivity toward epoxides following the activated monomer (AM) mechanism. For this reason, four‐armed SPCL was synthesized with four hydroxyl end groups (SPCL‐tetraol) and, in addition, with successively esterified ones down to a SPCL with four ester end groups (SPCL‐tetraester). SPCL species bearing fewer or no hydroxyl end groups segregate into needle‐like nanodomains within the epoxy networks and, if the concentration is high enough, also into crystalline domains. The stronger phase separation of SPCL‐tetraester within the epoxy network compared with SPCL‐tetraol is due to a reduction of the AM mechanism. The mechanical properties resulting from different morphologies lead to a trade‐off between higher storage moduli and Tg values in the case of the more phase separated (and partially crystalline) polymer alloys and higher strain at break in the case of the amorphous copolymers. Nevertheless, in both cases toughness is improved or at least kept on the same level as for the pure epoxy resin. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2188–2199  相似文献   

18.
Ellipsometry is used to measure the crystallization and melting temperature of a bidisperse blend of a crystalline‐amorphous diblock copolymer. Binary blends of sphere‐forming poly(butadiene‐ethylene oxide) (PB‐PEO) of two different molecular weights are prepared. The two PB‐PEO diblocks that are used share the same amorphous majority PB block length but different crystalline PEO minority block length. As the concentration of higher molecular weight diblock in the blend is increased, the size of the PEO spherical domains swell, providing access to the full range of domain sizes between the limits of the two neat diblock components. The change in domain size is consistent with a monotonic change in both the crystallization and melting temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

19.
Small‐angle X‐ray scattering (SAXS) studies of electrically conductive blends based on polyaniline–dodecylbenzenesulfonic acid (PANI–DBSA)/styrene–butadiene–styrene (SBS) triblock copolymer were performed to investigate the influence of the blend preparation procedure on the nanoscopic structure of the blends. The blends were prepared by mechanical mixing (MM) procedure and by in situ polymerization (ISP) of aniline in the presence of SBS. The results indicate that pure PANI–DBSA presents an extended phase consisting of crystalline islands of nanometric size, with a good spatial correlation between them, embedded into an amorphous PANI phase. This feature was not observed in SBS/PANI–DBSA blends prepared by MM or ISP. In MM blends, the PANI phase is constituted by smaller domains, containing poorly spatially correlated crystalline islands, whereas in ISP blends with low or medium amount of PANI, there is no SAXS peak which could be related to a spatial correlation between PANI crystalline islands. The conductivity of the ISP blends is higher when compared to MM blends because of the higher homogeneity at nanometric scale. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3069–3077, 2007  相似文献   

20.
The lamellar structures in uniaxially drawn films of miscible crystalline/crystalline polymer blends of poly(vinylidene fluoride) (PVDF) and poly(3‐hydroxybutyrate) (PHB) were investigated by static and time‐resolved measurements of small‐angle X‐ray scattering (SAXS). Intense SAXS in the low angle range of the meridian was interpreted as originating from the interlamellar inclusion structure, in which the PHB chains were included between the lamellae of PVDF. The interlamellar inclusion was induced for the uniaxially drawn films of PVDF/PHB = 30/70 blend with a draw ratio (DR) of 2.8–4.5, whereas the lamellae of the PVDF and PHB components were mutually excluded from each other forming their own lamellar stacks (interlamellar exclusion) in the blend with a higher DR (5.0–5.7). When the highly drawn film with the interlamellar exclusion structure was heat treated at 154–165 °C, the interlamellar inclusion structure was partially induced by the heat treatment. The time‐resolved SAXS measurements indicated that the interlamellar inclusion structure was developed by melting and recrystallization of PVDF during the heat treatment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 381–392, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号