首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, crystal structure studies and solvatochromic behavior of 2‐{(2E,4E)‐5‐[4‐(dimethylamino)phenyl]penta‐2,4‐dien‐1‐ylidene}malononitrile, C16H15N3 (DCV[3]), and 2‐{(2E,4E,6E)‐7‐[4‐(dimethylamino)phenyl]hepta‐2,4,6‐trien‐1‐ylidene}malononitrile, C18H17N3 (DCV[4]), are reported and discussed in comparison with their homologs having a shorter length of the π‐conjugated bridge. The compounds of this series have potential use as nonlinear materials with second‐order effects due to their donor–acceptor structures. However, DCV[3] and DCV[4] crystallized in the centrosymmetric space group P21/c which excludes their application as nonlinear optical materials in the crystalline state. They both crystallize with two independent molecules having the same molecular conformation in the asymmetric unit. The series DCV[1]–DCV[4] demonstrated reversed solvatochromic behavior in toluene, chloroform, and acetonitrile.  相似文献   

2.
The β‐Z selectivity in the hydrosilylation of terminal alkynes has been hitherto explained by introduction of isomerisation steps in classical mechanisms. DFT calculations and experimental observations on the system [M(I)2{κ‐C,C,O,O‐(bis‐NHC)}]BF4 (M=Ir ( 3 a ), Rh ( 3 b ); bis‐NHC=methylenebis(N‐2‐methoxyethyl)imidazole‐2‐ylidene) support a new mechanism, alternative to classical postulations, based on an outer‐sphere model. Heterolytic splitting of the silane molecule by the metal centre and acetone (solvent) affords a metal hydride and the oxocarbenium ion [R3Si? O(CH3)2]+, which reacts with the corresponding alkyne in solution to give the silylation product [R3Si? CH?C? R]+. Thus, acetone acts as a silane shuttle by transferring the silyl moiety from the silane to the alkyne. Finally, nucleophilic attack of the hydrido ligand over [R3Si? CH?C? R]+ affords selectively the β‐(Z)‐vinylsilane. The β‐Z selectivity is explained on the grounds of the steric interaction between the silyl moiety and the ligand system resulting from the geometry of the approach that leads to β‐(E)‐vinylsilanes.  相似文献   

3.
Regioselective reactions of morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide ( 1 ) with electrophiles and nucleophiles were studied. The compound ( 1 ) reacts with alkyl halides in basic medium to afford S‐substituted isothiourea derivatives, with amines to give 1,1‐disubstituted‐3‐(2‐phenyl‐3H‐quinazolin‐4‐ylidene) thioureas and l‐substituted‐3‐(2‐phenyl‐quinazolin‐4‐yl) thioureas via transami‐nation reaction. The reaction of ( 1 ) with amines in the presence of H2O2 provided N4‐disubstituted‐N'4‐(2‐phenylquinazolin‐4‐yl)morpholin‐4‐carboximidamide via oxidative desulfurization. Estimation of reactivity sites on ( 1 ) was supported using the ab initio (HF/6‐31G**) quantum chemistry calculations. The ir, 1H nmr, 13C nmr, mass spectroscopy and x‐ray identified the isolated products.  相似文献   

4.
The crystal structures of three quinuclidine‐based compounds, namely (1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine monohydrate, C7H13N3·H2O ( 1 ), 1,2‐bis(1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine, C14H22N4 ( 2 ), and 1,2‐bis(1‐azoniabicyclo[2.2.2]octan‐3‐ylidene)hydrazine dichloride, C14H24N42+·2Cl? ( 3 ), are reported. In the crystal structure of 1 , the quinuclidine‐substituted hydrazine and water molecules are linked through N—H…O and O—H…N hydrogen bonds, forming a two‐dimensional array. The compound crystallizes in the centrosymmetric space group P21/c. Compound 2 was refined in the space group Pccn and exhibits no hydrogen bonding. However, its hydrochloride form 3 crystallizes in the noncentrosymmetric space group Pc. It shows a three‐dimensional network structure via intermolecular hydrogen bonding (N—H…C and N/C—H…Cl). Compound 3 , with its acentric structure, shows strong second harmonic activity.  相似文献   

5.
The title compounds, namely 2,6‐bis[(1,3‐dimethylimidazolin‐2‐ylidene)amino]pyridinium perchlorate, C15H24N7+·ClO4, (I), and bis{2,6‐bis[(1,3‐dimethylimidazolin‐2‐ylidene)amino]pyridinium} μ‐oxido‐bis[trichloridoiron(III)], (C15H24N7)2[Fe2Cl6O], (II), are structurally unusual examples of the organization of molecular units via base pairing. The cations in salts (I) and (II) are derived from the bisguanidine N2,N6‐bis(1,3‐dimethylimidazolin‐2‐ylidene)pyridine‐2,6‐diamine, which associates in centrosymmetric pairs via two N—H...N hydrogen‐bond interactions. N—H...N bridges are formed between the protonated pyridine N atom and one of the nonprotonated guanidine N atoms, with N...H distances of 2.01 (1)–2.10 (1) Å. Compound (I) contains two crystallographically independent cations and anions per asymmetric unit. One of the perchlorate anions is disordered, while the [Fe2Cl6O]2− anion lies on an inversion centre.  相似文献   

6.
A series of N‐substituted 1,4‐dihydro‐4‐oxo‐1,8‐naphthyridine‐3‐carboxylate esters has been prepared in two steps from ethyl 2‐(2‐chloronicotinoyl)acetate. Treatment of the β‐ketoester with N,N‐dimethylformamide dimethyl acetal in N,N‐dimethylformamide (DMF) gave a 95% yield of the 2‐dimethylaminomethylene derivative. Subsequent reaction of this β‐enaminone with primary amines in DMF at 120oC for 24 h then afforded the target compounds in 47–82% yields by a tandem SNAr‐addition‐elimination reaction. Synthetic and procedural details as well as a mechanistic rationale are presented.  相似文献   

7.
The X‐ray crystal structures of solvates of sulfapyridine have been determined to be conformational polymorphs. 4‐Amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide (polymorph III), C11H11N3O2S, (1), 4‐amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide 1,3‐dioxane monosolvate, C11H11N3O2S·C4H8O2, (2), and 4‐amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide tetrahydrofuran monosolvate, C11H11N3O2S·C4H8O, (3), crystallized as the imide form, while piperidin‐1‐ium 4‐amino‐N‐(pyridin‐2‐yl)benzenesulfonamidate, C5H12N+·C11H10N3O2S, (4), crystallized as the piperidinium salt. The tetrahydrofuran and dioxane solvent molecules in their respective structures were disordered and were refined using a disorder model. Three‐dimensional hydrogen‐bonding networks exist in all structures between at least one sulfone O atom and the aniline N atom.  相似文献   

8.
Two methyl derivatives, five‐membered methyl 2‐{2‐[2‐(9,10‐dihydroacridin‐9‐ylidene)‐1‐methylhydrazinyl]‐4‐oxo‐4,5‐dihydro‐1,3‐thiazol‐5‐ylidene}acetate, C20H16N4O3S, (I), and six‐membered 2‐[2‐(9,10‐dihydroacridin‐9‐ylidene)‐1‐methylhydrazinyl]‐4H‐1,3‐thiazin‐4‐one, C18H14N4OS, (II), were prepared by the reaction of the N‐methyl derivative of 4‐(9,10‐dihydroacridin‐9‐ylidene)thiosemicarbazide, C14H12N4S, (III), with dimethyl acetylenedicarboxylate and methyl propiolate, respectively. The crystal structures of (I), (II) and (III) are molecular and can be considered in two parts: (i) the nearly planar acridine moiety and (ii) the singular heterocyclic ring portion [thiazolidine for (I) and thiazine for (II)] including the linking amine and imine N atoms and the methyl C atom, or the full side chain in the case of (III). The structures of (I) and (II) are stabilized by N—H...O hydrogen bonds and different π–π interactions between acridine moieties and thiazolidine and thiazine rings, respectively.  相似文献   

9.
The two title mononuclear compounds are four‐coordinate bis[N‐(5‐oxo‐4,4‐diphenyl‐4,5‐dihydro‐1H‐imidazolidin‐2‐ylidene)glycinato]copper(II) dimethylformamide disolvate, [Cu(C17H14N3O3)2]·2C3H7NO, (I), and five‐coordinate aquabis[N‐(5‐oxo‐4,4‐diphenyl‐4,5‐dihydro‐1H‐imidazolidin‐2‐ylidene)glycinato]copper(II) dimethylformamide disolvate, [Cu(C17H14N3O3)2(H2O)]·2C3H7NO, (II). In (I), the CuII ion lies on an inversion centre with one‐half of the complex molecule in the asymmetric unit, while in (II) there are two independent ligand molecules in the asymmetric unit, with the CuII ion and coordinated water molecule located on a general position. In both crystal structures, the complex molecules assemble in ribbons via N—H...O hydrogen‐bond networks.  相似文献   

10.
The imidazolium salt 3‐methyl‐1‐(naphthalen‐2‐yl)‐1H‐imidazolium iodide ( 2 ) has been treated with silver(I) oxide and [{Pt(μ‐Cl)(η3‐2‐Me‐C3H4)}2] (η3‐2‐Me‐C3H43‐2‐methylallyl) to give the intermediate N‐heterocyclic carbene complex [PtCl(η3‐2‐Me‐C3H4)(H$\widehat{CC}$ *‐κC*)] ( 3 ) (H$\widehat{CC}$ *‐κC*=3‐methyl‐1‐(naphthalen‐2‐yl)‐1H‐imidazol‐2‐ylidene). Compound 3 undergoes regiospecific cyclometallation at the naphthyl ring of the NHC ligand to give the five‐membered platinacycle compound [{Pt(μ‐Cl)($\widehat{CC}$ *)}2] ( 4 ). Chlorine abstraction from 4 with β‐diketonate Tl derivatives rendered the corresponding neutral compounds [Pt($\widehat{CC}$ *)(L‐O,O′)] {L=acac (HL=acetylacetone) 5 , phacac (HL=1,3‐diphenyl‐1,3‐propanedione) 6 , hfacac (HL=hexafluoroacetylacetone) 7 }. All of the compounds ( 3 – 7 ) were fully characterized by standard spectroscopic and analytical methods. X‐ray diffraction studies were performed on 5 – 7 , revealing short Pt?Pt and π–π interactions in the solid‐state structure. The influence of the R‐substituents of the β‐diketonate ligand on the photophysical properties and the use of the most efficient emitter, 5 , as phosphor converter has also been studied.  相似文献   

11.
Reaction of ortho‐xylylbis(N‐2,4,6‐trimethylbenzylimidazolinium); xylylbis(N‐butylimidazolinium) and para‐xylylbis(N‐2,4,6‐trimethylbenzylimidazolinium); xylylbis(N‐butylimidazolinium) salts with KOBut and [RhCl(COD)]2 yields ortho‐ and para‐xylylbis{(N‐alkylimidazolidin‐2‐ylidene)chloro(η4‐1,5‐cyclooctadiene) rho dium(I)} complexes (2a–d). All compounds synthesized were characterized by elemental analysis and NMR spectroscopy, and the molecular structures of the 2a and 2d were determined by X‐ray crystallography. Triethylsilane reacts with acetophenone derivatives in the presence of catalytic amount of the new rhodium(I)–carbene complexes (2a–d), to give the corresponding silylethers in good yields (83–99%). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The structures of two new sulfate complexes are reported, namely di‐μ‐sulfato‐κ3O,O′:O′′‐bis{aqua­[2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine‐κ3N1,N2,N6]­cadmium(II)} tetra­hydrate, [Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2O, and di‐μ‐sulfato‐κ2O:O′‐bis­[(2,2′:6′,2′′‐ter­pyridine‐κ3N1,N1′,N1′′)­zinc(II)] dihydrate, [Cd2(SO4)2(C15H11N3)2]·2H2O, the former being the first report of a Cd(tpt) complex [tpt is 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine]. Both compounds crystallize in the space group P and form centrosymmetric dimeric structures. In the cadmium complex, the metal center is heptacoordinated in the form of a pentagonal bipyramid, while in the zinc complex, the metal ion is in a fivefold environment, the coordination geometry being intermediate between square pyramidal and trigonal bipyramidal. Packing of the dimers leads to the formation of planar structures strongly linked by hydrogen bonding.  相似文献   

13.
The reaction of the β‐diketoiminate lithium complex (dipp)NacNacLi · OEt2 ((dipp)NacNac = 2‐((2,6‐diisopropylphenyl)amino)‐4‐((2,6‐diisopropylphenyl)imino)‐pent‐2‐enyl) with iPrMgCl and MgI2 yield the corresponding (dipp)NacNacMgiPr · OEt2 ( 1 ) and (dipp)NacNacMgI · OEt2 ( 2 ). The reaction of 2 with NaBH4 in diethylether gives (dipp)NacNacMg(μ‐H)3BH · OEt2 ( 3 ). The core element of compounds 1 – 3 is a six‐membered ring formed by N(1)–C(1)–C(2)–C(3)–N(2) and magnesium. The structures of 1 and 2 show the β‐diketoiminate backbone in a boat‐conformation with the tetrahedrally coordinated metal center at the prow and the opposing carbon atom at the stern. The magnesium atom in 3 is octahedrally coordinated and out of the β‐diketoiminate plane.  相似文献   

14.
A series of novel types of three‐armed poly(trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline)‐block‐poly(ε‐caprolactone) (PHpr‐b‐PCL) copolymers were successfully synthesized via melt block copolymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) and ε‐caprolactone (ε‐CL) with a trifunctional initiator trimethylolpropane (TMP) and stannous octoate (SnOct2) as a catalyst. For the homopolycondensation of N‐CBz‐Hpr with TMP initiator and SnOct2 catalyst, the number‐average molecular weight (Mn) of prepolymer increases from 530 to 3540 g mol?1 with the molar ratio of monomer to initiator (3–30), and the molecular weight distribution (Mw/Mn) is between 1.25 to 1.32. These three‐armed prepolymer PHpr were subsequently block copolymerized with ε‐caprolactone (ε‐CL) in the presence of SnOct2 as a catalyst. The Mn of the copolymer increased from 2240 to 18,840 g mol?1 with the molar ratio (0–60) of ε‐CL to PHpr. These products were characterized by differential scanning calorimetry (DSC), 1H NMR, and gel permeation chromatography. According to DSC, the glass‐transition temperature (Tg) of the three‐armed polymers depended on the molar ratio of monomer/initiator that were added. In vitro degradation of these copolymers was evaluated from weight‐loss measurements and the change of Mn and Mw/Mn. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1708–1717, 2005  相似文献   

15.
The bis(arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐NO2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N′‐2,6‐bis{di(4‐fluorophenyl)methyl}‐4‐nitrophenyl group, have been synthesized by two successive condensation reactions from 2,6‐diacetylpyridine. Their subsequent treatment with anhydrous cobalt (II) chloride gave the corresponding N,N,N′‐CoCl2 chelates, Co1 – Co5 , in excellent yield. All five complexes have been characterized by 1H/19F NMR and IR spectroscopy as well as by elemental analysis. In addition, the molecular structures of Co1 and Co3 have been determined and help to emphasize the differences in steric properties imposed by the inequivalent N‐aryl groups; distorted square pyramidal geometries are adopted by each complex. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), precatalyts Co1 – Co5 collectively exhibited very high activities for ethylene polymerization with 2,6‐dimethyl‐substituted Co1 the most active (up to 1.1 × 107 g (PE) mol?1 (Co) h?1); the MAO systems were generally more productive. Linear polyethylenes of exceptionally high molecular weight (Mw up to 1.3 × 106 g mol?1) were obtained in all cases with the range in dispersities exhibited using MAO as co‐catalyst noticeably narrower than with MMAO [Mw/Mn: 3.55–4.77 ( Co1 – Co5 /MAO) vs. 2.85–12.85 ( Co1 – Co5 /MMAO)]. Significantly, the molecular weights of the polymers generated using this class of cobalt catalyst are higher than any literature values reported to date using related N,N,N‐bis (arylimino)pyridine‐cobalt catalysts.  相似文献   

16.
The new N‐heterocyclic carbene (NHC) precursors 4, ‐dicyano‐1, ‐dimesityl‐ ( 9 ) and 4, 5‐dicyano‐1, 3‐dineopentyl‐2‐(pentafluorophenyl)imidazoline ( 14 ) were synthesized. The structure of 9 could be determined by X‐ray crystallography. With the 2‐pentafluorophenyl‐substituted imidazolines 9 and 14 , the [AgCl(NHC)], [RhCl(COD)(NHC)], and [RhCl(CO)2(NHC)] complexes [NHC = 4, 5‐dicyano‐1, 3‐dimesitylimidazol‐2‐ylidene ( 3 ) and 4, 5‐dicyano‐1, 3‐dineopentylimidazol‐2‐ylidene ( 4 )] were obtained. Crystal structures of [AgCl( 3 )] ( 15 ), [RhCl(COD)( 3 )] ( 17 ), [RhCl(COD)( 4 )] ( 18 ), and [RhCl(CO)2( 3 )] ( 19 ) were solved and with the crystal data of 19 , the percent buried volume ( %Vbur) of 31.8(±0.1) % was determined for NHC 3 . Infrared spectra of the imidazolines 9 and 14 and of the complexes 15 – 20 were recorded and the CO stretching frequencies of complexes 19 and 20 were used to determine the Tolman electronic parameters of the newly obtained NHCs 3 (TEP: 2060 cm–1) and 4 (TEP: 2061 cm–1), thus proving that 1, 3‐substitution of maleonitrile‐NHCs does not have a significant effect for the high π‐acceptor strength of these carbenes.  相似文献   

17.
The bromo‐substituted aromatic dicarboxylic acid 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP), in the presence of the N‐donor flexible bipyridyl‐type ligands 1,3‐bis(pyridin‐4‐yl)propane (bpp) and N,N′‐bis(pyridin‐4‐ylmethyl)oxalamide (4‐bpme) and ZnII ions, was used as an O‐donor ligand to assemble two novel luminescent metal–organic frameworks (MOFs), namely poly[[(μ‐5‐amino‐2,4,6‐tribromoisophthalato‐κ2O1:O3)[μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′]zinc(II)] dimethylformamide monosolvate], {[Zn(C8H2Br3NO4)(C13H14N2)]·C3H7NO}n, ( 1 ), and poly[[(μ‐5‐amino‐2,4,6‐tribromoisophthalato‐κ2O1:O3)diaqua[μ‐N,N′‐bis(pyridin‐4‐ylmethyl)oxalamide‐κ2N:N′]zinc(II)] monohydrate], {[Zn(C8H2Br3NO4)(C14H14N4O2)(H2O)2]·H2O}n, ( 2 ), using the solution evaporation method. Both ( 1 ) and ( 2 ) were characterized by FT–IR spectroscopy, elemental analysis (EA), solid‐state diffuse‐reflectance UV–Vis spectroscopy, and powder and single‐crystal X‐ray diffraction analysis. Complex ( 1 ) shows a two‐dimensional (2D) corrugated layer simplified as a 2D (4,4) topological network. The supramolecular interactions (π–π stacking, hydrogen bonding and C—Br…Br halogen bonding) play significant roles in the formation of an extended three‐dimensional (3D) supramolecular network of ( 1 ). Complex ( 2 ) crystallizes in the chiral space group P212121 and exhibits a novel 3D homochiral framework, showing a diamond‐like topology with Schläfli symbol 66. The homochirality of ( 2 ) is further confirmed by the solid‐state circular dichroism (CD) spectrum. The second harmonic generation (SHG) property of ( 2 ) was also investigated. The hydrogen and C—Br…Br/O halogen bonding further stabilize the framework of ( 2 ). The central ZnII ions in ( 1 ) and ( 2 ) show tetrahedral and octahedral coordination geometries, respectively. The coordinated and uncoordinated water molecules in ( 2 ) could be removed selectively upon heating. Most importantly, ( 1 ) and ( 2 ) show rapid and highly sensitive sensing for a large pool of nitroaromatic explosives (NAEs).  相似文献   

18.
The synthesis of an AB20‐type heteroarm star polymer consisting of a polystyrene arm and 20‐arms of poly(methyl methacrylate) or poly(tert‐butyl acrylate) was carried out using the combination of nitroxide‐mediated polymerization (NMP) and atom transfer radical polymerization (ATRP). The NMP of styrene was carried out using mono‐6‐[4‐(1′‐(2″,2″,6″,6″‐tetramethyl‐1″‐piperidinyloxy)‐ethyl)benzamido]‐β‐cyclodextrin peracetate ( 1 ) to afford end‐functionalized polystyrene with an acetylated β‐cyclodextrin (β‐CyD) unit (prepolymer 2 ) with a number‐average molecular weight (Mn) of 11700 and a polydispersity (Mw/Mn) of 1.17. After deacetylation of prepolymer 2 , the resulting polymer was reacted with 2‐bromoisobutyric anhydride to give end‐functionalized polystyrene with 20(2‐bromoisobutyrol)s β‐CyD, macroinitiator 4 . The copper (I)‐mediated ATRP of methyl methacrylate (MMA) and tert‐butyl acrylate (tBA) was carried out using macroinitiator 4 . The resulting polymers were isolated by SEC fractionation to produce AB20‐type star polymers with a β‐CyD‐core, 5 . The well‐defined structure of 5 with weight‐average molecular weight (Mw)s of 13,500–65,300 and Mw/Mn's of 1.26–1.28 was demonstrated by SEC and light scattering measurements. The arm polymers were separated from 5 by destruction with 28 wt % sodium methoxide in order to analyze the details of their characteristic structure. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4271–4279, 2005  相似文献   

19.
The revived interest in halogen bonding as a tool in pharmaceutical cocrystals and drug design has indicated that cyano–halogen interactions could play an important role. The crystal structures of four closely related δ‐keto esters, which differ only in the substitution at a single C atom (by H, OMe, Cl and Br), are compared, namely ethyl 2‐cyano‐5‐oxo‐5‐phenyl‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H22N2O3, (1), ethyl 2‐cyano‐5‐(4‐methoxyphenyl)‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C20H24N2O4, (2), ethyl 5‐(4‐chlorophenyl)‐2‐cyano‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H21ClN2O3, (3), and the previously published ethyl 5‐(4‐bromophenyl)‐2‐cyano‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H21BrN2O3, (4) [Maurya, Vasudev & Gupta (2013). RSC Adv. 3 , 12955–12962]. The molecular conformations are very similar, while there are differences in the molecular assemblies. Intermolecular C—H...O hydrogen bonds are found to be the primary interactions in the crystal packing and are present in all four structures. The halogenated derivatives have additional aromatic–aromatic interactions and cyano–halogen interactions, further stabilizing the molecular packing. A database analysis of cyano–halogen interactions using the Cambridge Structural Database [CSD; Groom & Allen (2014). Angew. Chem. Int. Ed. 53 , 662–671] revealed that about 13% of the organic molecular crystals containing both cyano and halogen groups have cyano–halogen interactions in their packing. Three geometric parameters for the C—X...N[triple‐bond]C interaction (X = F, Cl, Br or I), viz. the N...X distance and the C—X...N and C—N...X angles, were analysed. The results indicate that all the short cyano–halogen contacts in the CSD can be classified as halogen bonds, which are directional noncovalent interactions.  相似文献   

20.
2,4,6‐Tris(pyridin‐4‐yl)‐1,3,5‐triazine (tpt), as an organic molecule with an electron‐deficient nature, has attracted considerable interest because of its photoinduced electron transfer from neutral organic molecules to form stable anionic radicals. This makes it an excellent candidate as an organic linker in the construction of photochromic complexes. Such a photochromic three‐dimensional (3D) metal–organic framework (MOF) has been prepared using this ligand. Crystallization of tpt with Cd(NO3)2·4H2O in an N,N‐dimethylacetamide–methanol mixed‐solvent system under solvothermal conditions afforded the 3D MOF poly[[bis(nitrato‐κ2O,O′)cadmium(II)]‐μ3‐2,4,6‐tris(pyridin‐4‐yl)‐1,3,5‐triazine‐κ3N2:N4:N6], [Cd(NO3)2(C18H12N6)]n, which was characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the asymmetric unit contains one independent CdII cation, one tpt ligand and two coordinated NO3? anions. The CdII cations are connected by tpt ligands to generate a 3D framework. The single framework leaves voids that are filled by mutual interpenetration of three independent equivalent frameworks in a fourfold interpenetrating architecture. The compound shows a good thermal stability and exhibits a reversible photochromic behaviour, which may originate from the photoinduced electron‐transfer generation of radicals in the tpt ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号