首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Rapid quantification of structural defects, especially dislocations, is desired for characterization of semiconductor materials. Herein, we outline and validate a low‐cost approach for dislocation‐density quantification in silicon, involving a high‐resolution commercial dark‐field imaging device, a flatbed scanner. This method requires minimal surface preparation and can be performed on as‐cut 15.6 × 15.6 cm2wafers in less than 5 minutes. The method has been tested at a spatial resolution down to 250 µm. At 1 mm resolution, the average root mean square of the normalized error was 0.39.

  相似文献   


2.
Metallic single‐walled carbon nanotubes (m‐SWCNTs) with excellent conductivity and transparency are considered to be eminent electrode materials. However, it still remains a challenge to separate m‐SWCNTs by their diameters. As reported in this Letter, by effective purification treatment of SWCNTs, we succeeded in achieving diameter separation of m‐SWCNTs using gel column chromatography. TEM and Raman characterizations revealed that metal catalysts and amorphous carbon on tube surfaces were largely reduced, which contributed to the diameter separation of m‐SWCNTs.

  相似文献   


3.
The crystallization process of mechanically alloyed Fe75Zr25 metallic glasses is investigated by means of both thermo‐magnetization and in situ neutron powder thermo‐diffraction experiments in the temperature range 300–1073 K. It was found that the crystallization takes place in a two‐step process, involving firstly the appearance of metastable Fe and Fe2Zr crystalline phases between 880 K and 980 K, and a subsequent polymorphic transformation into Fe3Zr above 980 K. These findings explain the anomalous magnetization vs. temperature behaviour on heating–cooling cycles.

  相似文献   


4.
Steady‐state and time‐resolved photoluminescence of silicon nanoparticles dispersed in low‐polar liquids at above room temperature is studied. The roles of low‐polar liquids as well as mechanisms responsible for their temperature‐dependent photoluminescence are discussed. The thermal sensitivity of the photoluminescence is estimated and application of the nanoparticles as nanothermometers is proposed.

  相似文献   


5.
We propose a novel and complementary method for fabrication of flexible electronics. This method is not based on conventional printing using inks, but is based on the application of a toner‐based method such as Xerox or laser printing, followed by a lamination process. The lamination method is a solvent‐free and material‐saving process that simultaneously seals the devices, and the fabricated flexible devices have structural durability against bending. We have also shown that thermal lamination has an oriented growth effect, and the electrical characteristics of flexible organic field‐effect transistors did not degrade under a bending radius of 1 mm.

  相似文献   


6.
We report on the photoconductance in two‐dimensional arrays of gold nanorods. The arrays are formed by a combination of droplet deposition and stamping methods. We find that the plasmon induced photoconductance is sensitive to the linear polarization of the exciting photons consistent with the excitation of the longitudinal surface plasmon resonance of the nanorods.

  相似文献   


7.
An original approach is proposed to study the magnetic phase separation phenomenon. It is based on the registration of the noise‐like FMR Fine Structure (FMR FS) caused by the magnetic interparticle dipole–dipole interaction between spatially separated ferromagnetic regions. Data obtained for a La0.7Pb0.3MnO3 single crystal point to the existence of spatially separated ferromagnetic regions. It is shown that FMR FS of the La0.7Pb0.3MnO3 single crystal is temperature reversible and disappears at the maximum of magnetoresistance.

  相似文献   


8.
The DC, RF and noise characteristics of InGaP/GaAs heterojunction bipolar transistors (HBTs) with different base layer widths and δ‐doped layer in the collector were investigated. Analysis of the RF and noise characteristics revealed that the high frequency noise of these HBTs is reduced due to cross‐correlation of shot noise sources and Coulomb blockade from accumulated charge. The measured noise performance is in a good agreement with the HICUM L2 compact model [M. Schroter, IEICE Trans. Electron. E88‐C , 1098 (2005)] when correlated shot noise sources with Fano factor for collector shot noise are included.

  相似文献   


9.
Osmium diboride has been known for some time as a low compressibility material and a superhard material. It is suitable for hard coating applications. It is also a superconductor below 2.1 K. Using first‐principles calculations, the author investigated the geometry of its Fermi surface (FS) and calculated the related physical quantities. The theoretical results are used to predict the frequencies of the Shubnikov–de Haas quantum oscillations. Comparison with recent measurements of the magneto‐resistance oscillations in osmium diboride is made.

  相似文献   


10.
The non‐destructive method of Brillouin spectroscopy was applied to investigate the vibrations of 2D titanium nanoislands. Simulations realized by the Finite Element Method permitted determination of the dispersion relations of the surface waves propagating in the island structure and silicon substrate as well as the width of the frequency gap for the system studied. 3D maps of unit cell deformation for the structure with nanoislands for individual modes were obtained. The Brillouin experiment is shown as an excellent tool for direct experimental determination of the presence of eigenvibrations and the frequency gap in phononic structures in the GHz range.

  相似文献   


11.
In the present work, a review of the metallic (M) and semiconducting (S) separation of single‐wall carbon nanotubes (SWCNTs) using polysaccharide gels is presented. First, the progress of the M/S separation is described, including the following: the discovery of high‐yield separation using agarose gel electrophoresis, the separation of SWCNTs without an electric field, such as through the use of the freeze and squeeze method, the development of continuous separation using column chromatography, and the single‐chirality separation of SWCNTs using a multicolumn with dextran‐based gel. Next, the separation mechanism using gel is discussed, in which separation is achieved by selective adsorption of S‐SWCNTs by gel with a specific combination of surfactant and gel. Lastly, future directions for the separation of SWCNTs and for the use of the separated SWCNTs are discussed.

  相似文献   


12.
We report the maskless fabrication of ultrathin suspended GaN membranes designed by focused ion beam treatment of the GaN epilayer surface with subsequent photoelectrochemical etching. This technological approach allows the fabrication of ultrathin membranes, as well as supporting micro/nanocolumns in a controlled fashion. The analysis of the spatial and spectral distribution of microcathodoluminescence demonstrates that the membranes exhibit mainly yellow luminescence. These results pave the way for the fabrication of ultrathin suspended GaN membranes for MEMS/NEMS applications.

  相似文献   


13.
High‐speed solution shearing, in which a drop of dissolved material is spread by a coating knife onto the substrate, has emerged as a versatile, yet simple coating technique to prepare high‐mobility organic thin film transistors. Solution shearing and subsequent drying and crystallization of a thin film of conjugated molecules is probed in situ using microbeam grazing incidence wide‐angle X‐ray scattering (μGIWAXS). We demonstrate the advantages of this approach to study solution based crystal nucleation and growth, and identify casting parameter combinations to cast highly ordered and laterally aligned molecular thin films.

  相似文献   


14.
We report enhanced anomalous photovoltaic effects and switchable photovoltage generation in pure and Pr–Cr co‐doped BiFeO3 (BFO) nanotubes (NTs). Influence of metal doping on short circuit current, open circuit voltage, power conversion efficiency and fill factor are investigated. The power conversion efficiency of pure BFO NTs (~0.207%) is found to be enhanced by several orders of magnitude in comparison with the reported bulk effect. Pr‐doped NTs provide highest values of power conversion efficiency (~0.5%).

  相似文献   


15.
We present metal wrap through (MWT) silicon solar cells with passivated surfaces based on a simplified device structure. This so‐called HIP‐MWT structure (high‐performance metal wrap through) does not exhibit an emitter on the rear side and therefore simplifies processing. The confirmed peak efficiency of the fabricated solar cells with an edge length of 125 mm, screen printed contacts and solder pads is 20.2%. To our knowledge, this is the highest value reported for large‐area p‐type silicon solar cells to date.

  相似文献   


16.
Nanostructures formed in a titanium dioxide (TiO2)–poly(styrene)‐block‐poly(ethyleneoxide) nanocomposite film on top of fluor‐doped tin oxide (FTO) layers are investigated. The combinatorial approach is based on probing a wedge‐shaped FTO‐gradient with grazing incidence small angle X‐ray scattering (GISAXS) in combination with a moderate micro‐focus X‐ray beam. The characteristic lateral length is given by adjacent nanowire‐shaped TiO2 regions. It decreases from 200 nm on the thick FTO layer to 90 nm on the bare glass surface.

  相似文献   


17.
As electronic operating frequencies increase toward the terahertz regime, new electrooptic modulators capable of low‐voltage high‐frequency operation must be developed to provide the necessary optical interconnects. This Letter presents a new concept that exploits modulation instability to compensate for the intrinsically weak electrooptic effect, χ(2). Simulations demonstrate more than 50 times enhancement of electrooptic effect at millimeter wave frequencies leading to a substantial reduction in the required modulation voltage.

  相似文献   


18.
In this Letter, a novel modified anodization was utilized to synthesize high‐aspect‐ratio, top‐open and ultraflat‐surface TiO2 nanotubes. The interruption of voltage during anodization leads to the formation of a double‐layered structure. Due to the weak mechanical connection between the upper and the underlying layer, the two parts can be easily detached. Compared with the conventional ultrasonication method to remove the clusters of nanotubes where rough surfaces resulted, this efficient and reliable strategy may facilitate further applications of TiO2 nanotubes in diverse conditions.

  相似文献   


19.
This Letter presents studies on low‐field electrical conduction in the range of 4–300 K for an ultrafast material, i.e., InGaAs:ErAs grown by molecular beam epitaxy. The unique properties include nano‐scale ErAs crystallites in the host semiconductor InGaAs, a deep Fermi level and picosecond ultrafast photocarrier recombination. As the temperature drops, the conduction mechanisms are in the sequence of: thermal activation, nearest‐neighbor hopping, and variable‐range hopping. In the low‐temperature limit, finite‐con‐ductivity metallic behavior, not insulating, was observed. This unusual conduction behavior, related to the nanometer‐scale ErAs crystallite islands, is explained with the Abrahams scaling theory.

  相似文献   


20.
ZnO thin films with a rippled surface structure were used as electron‐collecting layers of inverted organic photovoltaics (OPVs). Using additional ultrathin layers of ZnO and TiO2 fabricated using atomic layer deposition (ALD), not only the power‐conversion efficiency of the OPVs could be increased (up to 3.5%), but also the photovoltaic performance became nearly constant within 100 days without any additional encapsulations of the solar cells under ambient conditions.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号