首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Electroanalysis》2004,16(17):1444-1450
The multi‐walled carbon nanotubes (MWNTs) modified glassy carbon electrode exhibited electrocatalytic activity to the reduction of oxygen in 0.1 M HAc‐NaAc (pH 3.8) buffer solution. Further modification with cobalt porphyrin film on the MWNTs by adsorption, the resulted modified electrode showed more efficient catalytic activity to O2 reduction. The reduction peak potential of O2 is shifted much more positively to 0.12 V (vs. Ag/AgCl), and the peak current is increased greatly. Cyclic voltammetry (CV), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were used to characterize the material and the modified film on electrode surface. Electrochemical experiments gave the total number of electron transfer for oxygen reduction as about 3, which indicated a co‐exist process of 2 electrons and 4 electrons for reduction of oxygen at this modified electrode. Meanwhile, the catalytic activities of the multilayer film (MWNTs/CoTMPyP)n prepared by layer‐by‐layer method were investigated, and the results showed that the peak current of O2 reduction increased and the peak potential shifted to a positive direction with the increase of layer numbers.  相似文献   

2.

Abstract  

The derivatization of a glassy carbon electrode surface was achieved with and without electrochemical reduction of various diazonium salts in acetonitrile solutions. The surfaces were characterized, before and after their attachment, by cyclic voltammetry and electrochemical impedance spectroscopy to evidence the formation of a coating on the carbon surface. The results were indicative of the presence of substituted phenyl groups on the investigated surface. Also, the effects of diazonium thin films at the surface of a glassy carbon electrode, modification time, and salt concentration on their electrochemical responses in the presence of the Fe(CN)63−/4− probe were investigated. Electrochemical impedance measurements indicated that the kinetics of electron transfer is slowed down when the time and the concentration used to modify the glassy carbon electrode are increased. We therefore modified a glassy carbon surface via its derivatization with and without electrochemical reduction of various diazonium salts in acetonitrile solution.  相似文献   

3.
The goal of this study was to prepare novel glassy carbon electrode surfaces using two similar bis-diazonium salts, 3,8-benzo[c]cinnoline (3,8-BCC-BDAS) and 3,8-benzo[c]cinnoline 5-oxide (3,8-BCCNO-BDAS) at the glassy carbon (GC) surface. These diazonium salts were reduced electrochemically and covalently electrografted onto the glassy carbon electrode surface to form modified electrodes. Electrochemical reduction of 3,8-BCC-BDAS and 3,8-BCCNO-BDAS salts on the electrode surface yielded a compact and stable film. The existence of BCC moieties on the GC surface was characterized by X-ray photoelectron spectroscopy, reflectance-adsorption infrared spectroscopy, cyclic voltammetry, ellipsometry, and electrochemical impedance spectroscopy. The stability and working potential range of the novel modified electrodes were also studied. The possibility of analytical application of these novel surfaces for inorganic cations and especially selectivity to copper ions was investigated. 3,8-diaminobenzo[c]cinnoline (3,8-DABCC) and its 5-oxide derivative (3,8-DABCCNO) were synthesized from the reductive cyclization of 2,2′-dinitrobenzidine and prepared their bisdiazonium salts via the tetrazotization reactions of the diamines with NaNO2. The structures of 3,8-DABCC and 3,8-DABCCNO and their corresponding bisdiazonium salts are confirmed by spectral analysis.  相似文献   

4.
In this work, the modification of a glassy carbon electrode with tetraruthenated porphyrins electrostatically assembled onto a Nafion film, previously adsorbed on the electrode surface, is reported. This modified electrode was characterized by scanning electron microscopy–energy-dispersive X-ray, Raman spectroscopy, UV-Vis spectroelectrochemistry, and cyclic voltammetry. The Nafion film onto the glassy carbon electrode shows a smooth disposition; when the tetraruthenated porphyrin is incorporated on the Nafion film, the complex is adsorbed in a homogeneous way. The modified electrode catalyzes HSO3 oxidation in water–ethanol solutions and shows an enhanced stability compared with the electrode modified with the dip coating method. Rotating disk electrode experiments showed a kinetic limitation to the electron transfer controlled by charge propagation in the film. I/E curves show a Tafel slope of 120 mV/decade corresponding to a first electron-transfer reaction, depending on the potential, as the determining step. Spectroelectrochemical experiments demonstrated that Ru(II) is the active site for the electrocatalysis.  相似文献   

5.
Copper complex dye (C.I. Direct Blue 200) film modified electrodes have been prepared by multiple scan cyclic voltammetry. The effect of solution pH and nature of electrode material on film formation was investigated. The optimum pH for copper complex film formation on glassy carbon was found to be 1.5. The mechanism of film formation on ITO seems to be similar to that on GC surface but completely different mechanism followed with gold electrode. Cyclic voltammetric features of our modified electrodes are in consistent with a surface‐confined redox process. The voltammetric response of modified electrode was found to be depending on pH of the contacting solution. UV‐visible spectra show that the nature of copper complex dye is identical in both solution phase and after forming film on electrode. The electrocatalytic behavior of copper complex dye film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of SO52? was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on film electrode compared to bare glassy carbon electrode. Feasibility of utilizing our modified electrode in analytical estimation of dopamine, ascorbic acid was also demonstrated.  相似文献   

6.
Prussian blue analogue nanoparticles doped with Ce(III) (CeHCF) have been synthesized using chitosan (CS) and poly(diallyldimethylammonium chloride) (PDDA) as protective matrix and were cast onto a glassy carbon electrode surface directly. Transmission electron microscopy, UV‐Vis absorption spectroscopy and resonance Rayleigh scattering technique were employed to characterize the PB analogue nanoparticles protected with CS and PDDA. Compared with the bare glassy carbon electrode, the modified electrode exhibited excellent performances for determining H2O2. This work demonstrates the feasibility of the CS‐PDDA‐CeHCF nanoparticles modified glassy carbon electrode for practical sensing applications.  相似文献   

7.
《Electroanalysis》2006,18(7):703-711
A simple procedure was developed to prepare a glassy carbon electrode modified with carbon nanotubes (CNTs) and thionin. Abrasive immobilization of CNTs on a GC electrode was achieved by gently rubbing the electrode surface on a filter paper supporting carbon nanotubes, then immersing the GC/CNTs‐modified electrode into a thionin solution (electroless deposition) for a short period of time (5–50 s for MWCNTs and 5–120 s for SWCNTs ). Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range 2–12. The electrochemical reversibility and stability of modified electrode prepared with incorporation of thionin into CNTs film was compared with usual methods for attachment of thionin to electrode surfaces such as electropolymerization and adsorption on the surface of preanodized electrodes. The formal potential of redox couple (E°′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of thionin immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2 and 3.2×10?10 mol cm?2 for MWCNTs and SWCNTs, respectively. The transfer coefficient (α) was calculated to be 0.3 and 0.35 and heterogeneous electron transfer rate constants (Ks) were 65 s?1 and 55 s?1 for MWCNTs/thionin and SWCNTs/thionin‐modified GC electrodes, respectively. The results clearly show a great facilitation of the electron transfer between thionin and CNTs adsorbed on the electrode surface. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of electrodes.  相似文献   

8.
This work describes the characterization of the grafted 2‐benzo[c]cinnoline (2BCC) molecules at a glassy carbon (GC) electrode surface by voltammetry and spectroscopy. Attachment of the molecule to the carbon substrate was achieved by the electrochemical reduction of 2‐benzo[c]cinnoline diazonium salt (2BCC‐DAS). GC electrode modification was carried out in aprotic solution with 2BCC diazonium salt. Dopamine (DA) and ascorbic acid (AA) were used to prove the surface modification to see the blockage of the electron transfer. The presence of 2BCC at the GC electrode surface was characterized by cyclic voltammetry and Raman spectroscopy. Raman spectroscopy was used to monitor molecular bound properties of the adsorbates at the 2BCC‐GC surface and confirm the attachment of 2BCC molecules onto the GC surface. The thickness of the 2BCC film on GC was also investigated by ellipsometric measurement.  相似文献   

9.
Modification of glassy carbon (GC) surfaces with phenanthroline derivatives (PDs) such as 5‐amino‐1,10‐phenanthroline (5AP) and 5,6‐diamino‐1,10‐phenanthroline (56DAP) is described in this study. Surface modification experiments were performed by cyclic voltammetry (CV) scanning from + 1.2 to + 2.7 V at scan rate of 100 mV/s applying 30 potential scans in acetonitrile (CH3CN) containing 1 mM PDs and 100 mM tetrabutylammoniumtetrafluoroborate (TBATFB). The presence of PDs on GC electrode was confirmed using CV, electrochemical impedance spectroscopy (EIS), contact angle measurements and ellipsometry and comparing with the results of bare GC electrode. A mechanism was proposed for the electrochemical modification of the GC electrode surface with PDs. The structure of the 5AP and 56DAP films was also discussed in the light of electrochemical and spectroscopic data. The complex‐forming ability of the modified surfaces against metal cations was investigated by square‐wave voltammetry (SWV). It was shown that surfaces having 1,10‐phenanthroline ligands with different functional groups were quite useful for the determination of transition metal ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
3‐Aminophenylcalix[4]pyrrole (3APCP) was grafted to a glassy carbon (GC) surface during the electrochemical oxidation process in 0.1 M tetrabutylammoniumtetra‐fluoroborate (TBATFB) containing acetonitrile solution. The presence of a surface film was confirmed electrochemically by comparing voltammograms of dopamine and ferricyanide redox probes at the bare and modified electrodes. Reflection‐absorption infrared spectroscopy (RAIRS), XPS, atomic force microscopy (AFM), ellipsometry and the contact angle measurements were also employed to characterize 3APCP film on GC electrode. RAIRS analysis revealed that calix[4]pyrrole was bonded to the glassy carbon surface via the etheric linkage. The stability of the modified GC electrode was also studied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
《Electroanalysis》2017,29(4):1069-1080
In this study, we introduce a very sensitive and selective method for the differential pulse anodic stripping determination of Sb(III) ion on the over‐oxidized poly(phenol red) modified glassy carbon electrode (PPhRedox/GCE) in 0.1 mol L‐1 HCl medium. The formation of both poly(phenol red) and over‐oxidized poly(phenol red) film on the electrode surfaces were characterized by electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy and scanning electron microscopy techniques. An anodic stripping peak of Sb(III) was observed at 0.015 V on the PPhRedox/GCE. Higher anodic stripping peak current of Sb(III) was obtained at PPhRedox/GCE compared with both bare GCE and poly(phenol red) film modified GCE (PPhRed/GCE). The calibration graph consisted of two linear segments of 0.044 ‐ 1.218 μg L−1 and 3.40 – 18.26 μg L−1 with a detection limit of 0.0075 μg L−1. The proposed over‐oxidized polymer film modified electrode was applied successfully for the analysis of antimony in different spiked water samples. Spiked recoveries for water samples were obtained in the range of 93.0–103.0%. The accuracy of the method was also verified through the analysis of standard reference materials (SCP SCIENCE‐EnviroMAT™ EP−L‐2).  相似文献   

12.
The electrochemical behavior of 5,11,17,23‐Tetrakis‐dimethylaminomethylcalix[4]arene (DCA) has been investigated by cyclic voltammetry (CV). The results show that there is an irreversible electrochemical oxidative wave with peak potential of 1.35 V in chloroform at a glassy carbon electrode. The kinetic parameters of the andic wave, such as α, n and ks, were discussed. In addition, a new pair of quasi‐reversible redox peaks with peak potentials of 0.72 V and 0.94 V was found. It can result in DCA electrodeposition at the electrode surface. This film modified electrode was characterized by CV and electrochemical impedance spectroscopy (EIS). Moreover, the possible mechanism of electrodeposition was also discussed  相似文献   

13.
刘有芹  颜芸  沈含熙 《中国化学》2005,23(9):1165-1172
A thin film of manganese hexacyanoferrate (MnHCF) was electrochemically formed on a glassy carbon (GC) electrode to prepare a chemically modified electrode (CME). The mechanism of film formation of MnHCF and its growth process were investigated in detail by cyclic voltammetry. The results show that the stoichiometric composition of MnHCF is Mn^ⅢFe^Ⅲ(CN)6, an analogue of prussian yellow. There exist three clear-cut stages in the whole modification process and the last stage is indispensable to the fabrication of homogenized, stable MnHCF film and must last for an appropriate time. The surface morphology of MnHCF/GC electrode was characterized by scanning electron microscopy (SEM), which further verified the effective deposition of MnHCF film on GC. The kinetic constants of MnHCF/GC electrode process were also evaluated. The resulting MnHCF film modified electrode presented good stability and high electrocatalytic activity toward the oxidation of H2O2, indicating that MnHCF film possesses function of catalase and can be expected for analytical purposes.  相似文献   

14.
A novel Prussian blue/copper‐gold bimetallic nanoparticles hybrid film modified electrode was prepared by electrochemical deposition on a glassy carbon electrode (PB/Cu‐AuNPs/GCE). Morphology and electrochemistry of this electrode were studied by UV‐vis spectroscopy, scanning electron microscopy, X‐ray diffraction, cyclic voltammetry and electrochemical impedance spectroscopy. The sensor showed significantly better electrocatalytic activity for the reduction of hydrogen peroxide in comparison with the single PB/GCE and PB/AuNPs/GCE. This was attributed to the synergistic effect of PB and Cu‐Au bimetallic nanoparticles. Also, the sensor demonstrated an overall high level of performance for the analysis of H2O2 in the concentration range from 0.002 to 0.84 mM.  相似文献   

15.
采用循环伏安法(CV)在聚邻苯二胺修饰玻碳电极表面络合Ni2+,然后将其置于NaOH溶液中CV扫描成功制备了镍氢氧化物/聚邻苯二胺/玻碳修饰电极(Ni(OH)2/PoPD/GC).通过CV探讨了聚合和负载机理,电化学交流阻抗谱(EIS)表征了电极修饰过程中界面阻抗变化,扫描电镜表征了PoPD膜负载Ni(OH)2后的形态...  相似文献   

16.
《Electroanalysis》2004,16(20):1697-1703
An amperometric glucose biosensor based on multi‐walled carbon nanotube (MWCNT) modified glassy carbon electrode has been developed. MWCNT‐modified glassy carbon electrode was obtained by casting the electrode surface with multi‐walled carbon nanotube materials. Glucose oxidase was co‐immobilized on the MWCNT‐modified glassy carbon surface by electrochemical deposition of poly(o‐phenylenediamine) film. Enhanced catalytic electroreduction behavior of oxygen at MWCNT‐modified electrode surface was observed at a potential of ?0.40 V (vs. Ag|AgCl) in neutral medium. The steady‐state amperometric response to glucose was determined at a selected potential of ?0.30 V by means of the reduction of dissolved oxygen consumed by the enzymatic reaction. Common interferents such as ascorbic acid, 4‐acetamidophenol, and uric acid did not interfere in the glucose determination. The linear range for glucose determination extended to 2.0 mM and the detection limit was estimated to be about 0.03 mM.  相似文献   

17.
We have prepared a glassy carbon electrode modified with poly-2,6-pyridinedicarboxylic acid and with magnetic Fe3O4 nanoparticles. This modification enhances the effective surface area and the electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) in addition to providing positively charged groups for electrostatic assembly of the phosphate group of NADH. The modified electrode responds linearly to NADH in the range from 5?×?10?8 to 2.5?×?10?5?M and gives a lower detection limit of 1?×?10?8?M. It displays satisfactory selectivity and reproducibility. The sensor was applied to rapid screening of plant extracts for their antioxidant properties.
Figure
Poly-2,6-pyridinedicarboxylic acid (PDC) was fabricated by electropolymerizing 2,6-pyridinedicarboxylic acid with cyclic voltammetry (CV) on the glassy carbon electrode (GCE) surface. The magnetic Fe3O4 nanoparticles treated with aminopropyltriethoxysilane (APTS) modified on the PDC/GCE to form APTS-Fe3O4/PDC composite film. The APTS-Fe3O4/PDC film had enhanced the effective electrode surface area and provided positively charged groups for electrostatic assembly of phosphate group of NADH.  相似文献   

18.
A sensitive nitrite (NO2) biosensor was fabricated by using sodium dodecyl sulfate (SDS), Au nanorods, and thionine functionalized MWCNTs (TH‐f‐MWCNTs) nanohybrids modified glassy carbon electrode. TH was covalently immobilized on the MWCNTs via a carbodiimide reaction. Comparing with MWCNTs/GCE, TH‐f‐MWCNTs/GCE displays higher catalytic activity toward the oxidation of NO2, since TH not only promoted the electronic transmission but also could improve the concentration of NO2 at the surface of the modified electrode in acidic solutions. The Au nanorods (AuNRs) were prepared through a simple wet chemical method and were characterized by TEM. The extremely high surface‐to‐volume ratios associated with one dimension nanostructures make their electrical properties extremely sensitive to species adsorbed on surfaces and result in excellent sensitivity and selectivity. SDS displays excellent film forming ability, which made the electrode stable. Under optimal conditions, the linear range for the detection of nitrite was 0.26 to 51 μM, and the low detection limit was 20 nM. In addition, the modified electrode was successfully applied to determine nitrite in real water samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Salicylic acid is a phytohormone, playing crucial roles in signal transduction, crop growth, and development, and defense to environmental challenges. In this study, a highly selective electrochemical sensor was designed and used to determine salicylic acid using molecularly imprinted polymers for recognition. The electrochemical sensor was fabricated via stepwise modification of gold nanoparticle–graphene–chitosan and molecularly imprinted polymers on a glassy carbon electrode. With electrochemical deposition, a gold nanoparticle–graphene–chitosan film was deposited on the glassy carbon electrode and enhanced the sensitivity. Molecularly imprinted polymers with adsorbed template salicylic acid were added to the surface of the modified electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the modified electrodes. Salicylic acid in wheat was quantified by the sensor using the molecularly imprinted polymer/gold nanoparticle–graphene–chitosan/glassy carbon electrode. Concentrations of salicylic acid from 5?×?10?10 to 5?×?10?5?mol?L?1 were determined showing that the developed sensor was suitable for the analysis of food.  相似文献   

20.
Neutral red was directly electropolymerized onto the carbon nanotubes modified electrode. A polymerized neutral red/carbon nanotubes composite film was characterized by scanning electron micrograph (SEM) and cyclic voltammetry (CV). Well‐defined voltammetric responses are observed for [Fe(CN)6]4?/3? on the composite film modified glassy carbon electrode. And it's found that this modified electrode has good catalysis on the redox of rutin. Differential pulse voltammetry method was used to determinate the concentration of rutin and obtain a linear equation between the current and concentration in a certain range. The modified electrode is satisfied with us for its good sensibility and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号