首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first 4π‐electron resonance‐stabilized 1,3‐digerma‐2,4‐diphosphacyclobutadiene [LH2Ge2P2] 4 (LH=CH[CHNDipp]2 Dipp=2,6‐iPr2C6H3) with four‐coordinate germanium supported by a β‐diketiminate ligand and two‐coordinate phosphorus atoms has been synthesized from the unprecedented phosphaketenyl‐functionalized N‐heterocyclic germylene [LHGe‐P=C=O] 2 a prepared by salt‐metathesis reaction of sodium phosphaethynolate (P≡C?ONa) with the corresponding chlorogermylene [LHGeCl] 1 a . Under UV/Vis light irradiation at ambient temperature, release of CO from the P=C=O group of 2 a leads to the elusive germanium–phosphorus triply bonded species [LHGe≡P] 3 a , which dimerizes spontaneously to yield black crystals of 4 as isolable product in 67 % yield. Notably, release of CO from the bulkier substituted [LtBuGe‐P=C=O] 2 b (LtBu=CH[C(tBu)N‐Dipp]2) furnishes, under concomitant extrusion of the diimine [Dipp‐NC(tBu)]2, the bis‐N,P‐heterocyclic germylene [DippNC(tBu)C(H)PGe]2 5 .  相似文献   

2.
[Ge9]4? Zintl clusters are used as soluble germanium source for a bottom–up fabrication of Ge nanomorphologies such as inverse opal structures with tunable composition. The method is based on the assembly and oxidation of [Ge9]4? clusters in a template mold using SiCl4, GeCl4, and PCl3 leading to Si and P‐containing Ge phases as shown by X‐ray diffraction, Raman spectroscopy, and energy‐dispersive X‐ray analysis. [Ge9]4? clusters are retained using ethylenediamine (en) as a transfer medium to a mold after removal of the solvent if water is thoroughly excluded, but are oxidized to amorphous Ge in presence of water traces. 1H NMR spectroscopy reveals the oxidative deprotonation of en by [Ge9]4?. Subsequent annealing leads to crystalline Ge. As an example for wet‐chemical synthesis of complex Ge nanomorphologies, we describe the fabrication of undoped and P‐doped inverse opal‐structured Ge films with a rather low oxygen contents. The morphology of the films with regular volume porosity is characterized by SEM, TEM, and grazing incidence small‐angle X‐ray scattering.  相似文献   

3.
We investigated the structural principles of novel germanium modifications derived by oxidative coupling of Zintl‐type [Ge9]4?clusters in various ways. The structures, stabilities, and electronic properties of the predicted {2[Ge9]n} sheet, {1[Ge9]n} nanotubes, and fullerene‐like {Ge9}n cages were studied by using quantum chemical methods. The polyhedral {Ge9}n cages are energetically comparable with bulk‐like nanostructures of the same size, in good agreement with previous experimental findings. Three‐dimensional structures derived from the structures of lower dimensionality are expected to shed light on the structural characteristics of the existing mesoporous Ge materials that possess promising optoelectronic properties. Furthermore, 3D networks derived from the polyhedral {Ge9}n cages lead to structures that are closely related to the well‐known LTA zeolite framework, suggesting further possibilities for deriving novel mesoporous modifications of germanium. Raman and IR spectra and simulated X‐ray diffraction patterns of the predicted materials are given to facilitate comparisons with experimental results. The studied novel germanium modifications are semiconducting, and several structure types possess noticeably larger band gaps than bulk α‐Ge.  相似文献   

4.
Defects were created on the surface of highly oriented pyrolytic graphite (HOPG) by sputtering with an Ar+ ion beam, then characterized using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) at 500°C. In the XPS C1s spectrum of the sputtered HOPG, a sp3 carbon peak appeared at 285.3 eV, representing surface defects. In addition, 2 sets of peaks, the Cx and CxH ion series (where x = 1, 2, 3...), were identified in the ToF‐SIMS negative ion spectrum. In the positive ion spectrum, a series of CxH2+• ions indicating defects was observed. Annealing of the sputtered samples under Ar was conducted at different temperatures. The XPS and ToF‐SIMS spectra of the sputtered HOPG after 800°C annealing were observed to be similar to the spectra of the fresh HOPG. The sp3 carbon peak had disappeared from the C1s spectrum, and the normalized intensities of the CxH and CxH2+• ions had decreased. These results indicate that defects created by sputtering on the surface of HOPG can be repaired by high‐temperature annealing.  相似文献   

5.
The ternary rare‐earth germanium antimonides RE12Ge7?xSb21 (RE=La–Pr; x=0.4–0.5) are synthesized by direct reactions of the elements. Single‐crystal X‐ray diffraction studies indicate that they adopt a new structure type (space group Immm, Z=2, a=4.3165(4)–4.2578(2) Å, b=15.2050(12)–14.9777(7) Å, c=34.443(3)–33.9376(16) Å in the progression from RE=La to Pr), integrating complex features found in RE6Ge5?xSb11+x and RE12Ga4Sb23. A three‐dimensional polyanionic framework, consisting of Ge pairs and Sb ribbons, outlines large channels occupied by columns of face‐sharing RE6 trigonal prisms. These trigonal prisms are centered by additional Ge and Sb atoms to form GeSb3 trigonal‐planar units. A bonding analysis attempted through a Zintl–Klemm approach suggests that full electron transfer from the RE atoms to the anionic substructure cannot be assumed. This is confirmed by band‐structure calculations, which also reveal the importance of Ge? Sb and Sb? Sb bonding. Magnetic measurements on Ce12Ge6.5Sb21 indicate antiferromagnetic coupling but no long‐range ordering down to 2 K.  相似文献   

6.
Plasma‐enhanced chemical vapor deposition was employed to fabricate hydrogenated amorphous carbon (a‐C:H) films and fluorine‐doped hydrogenated amorphous (a‐C:H:F) carbon films. For comparison purpose, the a‐C:H films were treated with CF4 plasma. The bonding structure and tribological behavior of the films were investigated. The results indicate that the F presented mainly in the forms of C–F3, C–F and C–F2 groups in both the a‐C:H:F film and the surface CF4 plasma processed hydrogenated amorphous carbon (F‐P‐a‐C:H) films. Moreover, the a‐C:H:F films, because of the transformation of sp3 to sp2, possess a lower friction coefficient than that of the F‐P‐a‐C:H films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The sulfurization of DmpGeH3 (Dmp=2,6‐dimesitylphenyl) afforded the trinuclear germanium sulfide [DmpGe(μ‐S)]2(μ‐S)2Ge(SH)‐Dmp and a series of polythiadigermabicyclo[x.1.1]alkanes (x=3, 4, 5). The reduction of the S? S bonds of these germabicycloalkanes by NaBH4 at 0 °C afforded the dinuclear mercaptogermane syn‐[DmpGe(SH)(μ‐S)2Ge(SH)‐Dmp] ( 5 ) in good yield. The reaction of [Pd(dppe)Cl2] (dppe=1,2‐bis(diphenylphosphanyl)ethane) and the dilithium salt of 5 prepared in situ by the addition of nBuLi (2 equiv) gave the Ge2PdS4 cluster [DmpGe(μ‐S)]2[(μ‐S)2Pd(dppe)], in which the dithiadigermetanedithiolate is bound to the Pd atom at the two thiolato sulfur atoms. The same reaction with [Pd(PPh3)2Cl2] gave another Ge2PdS4 cluster, [DmpGe(μ‐S)]2[(μ‐S)2Pd(PPh3)], but with the dithiadigermetanedithiolate and the Pd center conjoined through a μ‐S atom between the two germanium atoms in addition to the two thiolato sulfur atoms to form a highly distorted cluster core. The formation of two different types of Ge2PdS4 clusters represents the usefulness of 5 in the synthesis of various polynuclear complexes composed of germanium and transition metals.  相似文献   

8.
The chemical composition and bonding structures of B–C–N–H films fabricated by medium frequency magnetron sputtering, with N2+CH4+Ar gas mixture sputtering the boron target, were investigated. XPS and FTIR spectrometric analyses show that the increase of CH4 flow rate during deposition causes an increase of the C content in the films. The increase in the CH4 flow rate promotes an increase in the B–C, C–N single and C?N double bonds which are the components of the hybridized B–C–N bonding structure. From the results of Raman spectroscopy analysis, it is seen that the intensity of the D band of the films' Raman spectrum decreases with increasing CH4 flow rate, indicating a decrease of the sp2‐phase content or the sp2 C cluster size. The decreases of ID/IG also reflect the formation of more boron‐ or nitrogen‐ bound sp3‐coordinated carbons in the films. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A double‐decker (DD) type selenidogermanate complex with C=O functionalized organic decoration, [(R1Ge4)Se6] ( 1 , R1 = CMe2CH2COMe), was synthesized by reaction of R1GeCl3 with Na2Se, and subsequently underwent a light‐induced transformation reaction to yield [Na(thf)2][(RGeIV)2(RGeIII)(GeIIISe)Se5] ( 2 ). Similar to the observations reported previously for the Sn/S homologue of 1 , the product comprises a mixed‐valence complex with a newly formed Ge–Ge bond. However, different from the transformation of the tin sulfide complex, the selenidogermanate precursor did not produce a paddle‐wheel‐like dimer of the DD type structure, but led to the formation of a noradamantane (NA) type architecture, which has so far been restricted to the Si/Se and Ge/Te elemental combination.  相似文献   

10.
The hydrogenated amorphous carbon nitride (a‐CNx:H) thin films were synthesized on the SS‐304 substrates using a dense plasma focus device. The a‐CNx:H thin films were synthesized using CH4/N2 admixture gas and 20 focus deposition shots on substrates placed at different distances from the anode top. X‐ray photoelectron spectroscopy and Raman analysis confirmed different C–N bonding in the a‐CNx:H thin films. A decrease in the N/C ratio as well as the sp3/sp2 ratio with an increase in the substrate distance has been observed. The higher amount of C–N formation for the film synthesized at 10 cm is observed which decreases with increasing distance. The X‐ray photoelectron spectroscopy and Raman analysis affirmed the C ≡ N presence in all the thin films synthesized at different distances. The morphology of the synthesized a‐CNx:H thin films showed nanoparticles and nanoparticle clusters formation at the surface. The hardness results showed comparatively lower hardness of the a‐CNx:H thin films due to the presence of C ≡ N. The C–N formation with lower amount of C ≡ N and a higher N/C ratio as well as a higher sp3/sp2 ratio for the films synthesized at 10 cm show reasonably higher hardness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the influence of nickel incorporation on the mechanical properties and the in vitro bioactivity of hydrogenated carbon thin films were investigated in detail. Amorphous hydrogenated carbon (a‐C:H) and nickel‐incorporated hydrogenated carbon (Ni/a‐C:H) thin films were deposited onto the Si substrates by using reactive biased target ion beam deposition technique. The films' chemical composition, surface roughness, microstructure and mechanical properties were investigated by using XPS, AFM, TEM, nanoindentation and nanoscratch test, respectively. XPS results have shown that the film surface is mainly composed of nickel, nickel oxide and nickel hydroxide, whereas at the core is nickel carbide (Ni3C) only. The presence of Ni3C has increased the sp2 carbon content and as a result, the mechanical hardness of the film was decreased. However, Ni/a‐C:H films shows very low friction coefficient with higher scratch‐resistance behavior than that of pure a‐C:H film. In addition, in vitro bioactivity study has confirmed that it is possible to grow dense bone‐like apatite layer on Ni/a‐C:H films. Thus, the results have indicated the suitability of the films for bone‐related implant coating applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The structure of 2,5‐bis­(methyl­thio)‐1,4‐benzo­quinone, C8H8O2S2, is composed of an essentially planar centrosymmetric benzo­quinone substituted with two methyl­thio groups. The important bond distances are S—Csp3 1.788 (2) and S—Csp2 1.724 (2) Å, and the two Csp2—Csp2 distances are 1.447 (3) and 1.504 (3) Å, which differ significantly. There are short S?S interactions of 3.430 (1) Å and Csp2—H?O‐type contacts forming a dimeric motif with graph set R22(8). The structure of 2‐methyl‐3‐(methyl­sulfonyl)­benzo­[b]­thio­phene, C10H10O2S2, is composed of an essentially planar benzo­thio­phene moiety substituted with methyl and methyl­sulfonyl groups. The mean values of the important bond distances are endocyclic S—Csp2 1.734 (3), S=O 1.434 (4) and C—Caromatic 1.389 (10) Å. The exocyclic S—Csp2 and S—Csp3 distances are 1.759 (4) and 1.763 (5) Å, respectively.  相似文献   

13.
The title compound, C21H28O4, has a 4‐acetoxy substituent positioned on the steroid α face. The six‐membered ring A assumes a conformation intermediate between 1α,2β‐half chair and 1α‐sofa. A long Csp3—Csp3 bond is observed in ring B and reproduced in quantum‐mechanical ab initio calculations of the isolated molecule using a molecular‐orbital Hartree–Fock method. Cohesion of the crystal can be attributed to van der Waals interactions and weak C—H...O hydrogen bonds.  相似文献   

14.
Undoped a‐C thin films were deposited with varying power density from 10 to 25 W/cm2 using unbalanced closed‐field magnetron sputtering (CFUBMS). The effect of power density on the physical and electrochemical properties was investigated by experimental characterization methods and atomistic simulations. XPS indicated that the films were composed mostly of sp2‐bonded carbon (55–58 at.%) with a small amount of oxygen (8–9 at.%) in the surface region. The films appeared completely amorphous in XRD. The ID/IG ratio obtained by Raman spectroscopy indicated an increase from 1.76 to 2.34 with power density. The experimental and simulated data suggested a possible ordering and/or clustering of the sp2 phase with power density as the cause of the improved electrical properties of the a‐C films. The electrochemical properties of a‐C were between those of glassy carbon and tetrahedral amorphous carbon with potential windows ranging from 2.77 to 2.93 V and double‐layer capacitance values around 0.90 μF cm?2. Electron transfer for Ru(NH3)63+/2+ and FcMeOH+1/0 was reversible whereas that for IrCl62?/3? was quasi‐reversible. Peak potential separation of dopamine and oxidation potential of ascorbic acid decreased with power density, correlating with the structural and electrical changes of the films. The a‐C thin films deposited by CFUBMS are inherently conductive and their physical properties can be adjusted by varying the deposition parameters to a wide range of electrochemical applications.  相似文献   

15.
Difference X‐ray photoelectron spectroscopy (D‐XPS) revealed the surface oxidation process of a diamond‐like carbon (DLC) film. Evaluation of surface functional groups on DLC solely by the C 1s spectrum is difficult because the spectrum is broad and has a secondary asymmetric lineshape. D‐XPS clarified the subtle but critical changes at the DLC surface caused by wet oxidation. The hydroxyl (C―OH) group was dominant at the oxidized surface. Further oxidized carbonyl (C?O) and carboxyl (including carboxylate) (COO) groups were also obtained; however, the oxidation of C?O to COO was suppressed to some extent because the reaction required C―C bond cleavage. Wet oxidation cleaved the aliphatic hydrogenated and non‐hydrogenated sp2 carbon bonds (C―H sp2 and C―C sp2) to create a pair of C―OH and hydrogenated sp3 carbon (C―H sp3) bonds. The reaction yield for C―H sp2 was superior at the surface, suggesting that the DLC film was hydrogen rich at the surface. Oxidation of aromatic sp2 rings or polycyclic aromatic hydrocarbons such as nanographite to phenols did not occur because of their resonance stabilization with electron delocalization. Non‐hydrogenated sp3 carbon (C―C sp3) bonds were not affected by oxidation, suggesting that these bonds are chemically inert. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Carbon nitride (CNx) bilayer films with Ti and TiN interlayer were synthesized by cathode arc technique at various nitrogen pressures (PN2). The dependences of microstructure and bonding composition of the films on the PN2 and interlayer were analyzed by Raman spectroscopy and X‐ray photoelectron spectroscopy. Microstructure evolution consisting of the ordering and size of Csp2 clusters, the faction of N–sp3/N–sp2 bonds and graphite‐like/pyridine‐like configurations was dominated by PN2, interlayer and annealing. The results showed that Ti and TiN interlayer decrease the atomic ratio of N/C and increase clustering Csp2. High PN2 induces the formation of C ≡ N and C ? N bonds, the increase of sp2‐bonding content and the growth of Csp2 clusters. A large part of nitrogen atoms are coordinated with sp2‐hybridized carbon (minimum 71% for annealed CNx monolayer). TiN/CNx bilayer had a higher content of pyridine‐like configuration. Morphological characteristics of CNx monolayer and bilayer mainly depend on the surface character (roughness and surface energy) of the sublayer. The internal stress in the as‐deposited Ti/CNx bilayer is smaller, but it after annealing is higher than that of CNx monolayer and TiN/CNx bilayer. These results may be of interest for studying the CNx films with controlled bonding composition and expected engineering properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The two‐electron reduction of a Group 14‐element(I) complex [RË?] (E=Ge, R=supporting ligand) to form a novel low‐valent dianion radical with the composition [RË:]. 2? is reported. The reaction of [LGeCl] ( 1 , L=2,6‐(CH?NAr)2C6H3, Ar=2,6‐iPr2C6H3) with excess calcium in THF at room temperature afforded the germylidenediide dianion radical complex [LGe]. 2??Ca(THF)32+ ( 2 ). The reaction proceeds through the formation of the germanium(I) radical [LGe?], which then undergoes a two‐electron reduction with calcium to form 2 . EPR spectroscopy, X‐ray crystallography, and theoretical studies show that the germanium center in 2 has two lone pairs of electrons and the radical is delocalized over the germanium‐containing heterocycle. In contrast, the magnesium derivative of the germylidendiide dianion radical is unstable and undergoes dimerization with concurrent dearomatization to form the germylidenide anion complex [C6H3‐2‐{C(H)?NAr}Ge‐Mg‐6‐{C(H)‐NAr}]2 ( 3 ).  相似文献   

18.
19.
The title compounds, C12H13NO4, are derived from l ‐threonine and dl ‐threonine, respectively. Hydro­gen bonding in the chiral derivative, (2S/3R)‐3‐hydroxy‐2‐(1‐oxoisoindolin‐2‐yl)­butanoic acid, consists of O—Hacid?Oalkyl—H?O=Cindole chains [O?O 2.659 (3) and 2.718 (3) Å], Csp3—H?O and three C—H?πarene interactions. In the (2R,3S/2S,3R) racemate, conventional carboxylic acid hydrogen bonding as cyclical (O—H?O=C)2 [graph set R22(8)] is present, with Oalkyl—H?O=Cindole, Csp3—H?O and C—H?πarene interactions. The COOH group geometry differs between the two forms, with C—O, C=O, C—C—O and C—C=O bond lengths and angles of 1.322 (3) and 1.193 (3) Å, and 109.7 (2) and 125.4 (3)°, respectively, in the chiral structure, and 1.2961 (17) and 1.2210 (18) Å, and 113.29 (12) and 122.63 (13)°, respectively, in the racemate structure. The O—C=O angles of 124.9 (3) and 124.05 (14)° are similar. The differences arise from the contrasting COOH hydrogen‐bonding environments in the two structures.  相似文献   

20.
Two bulky, chiral, monodentate N‐heterocyclic carbene ligands were applied to palladium‐catalyzed asymmetric C?H arylation to incorporate C(sp3)?H bond activation. Racemic mixtures of the carbamate starting materials underwent regiodivergent reactions to afford different trans‐2,3‐substituted indolines. Although this CAr?Calkyl coupling requires high temperatures (140–160 °C), chiral induction is high. This regiodivergent reaction, when carried out with enantiopure starting materials, can lead to single structurally different enantiopure products, depending on the catalyst chirality. The C?H activation at a tertiary center was realized only in the case of a cyclopropyl group. No C?H activation takes place alpha to a tertiary center. A detailed DFT study is included and analyses of methyl versus methylene versus methine C?H activation is used to rationalize experimentally observed regio‐ and enantioselectivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号