首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
聚乙烯醇硫酸钾水凝胶电机械化学行为研究   总被引:1,自引:0,他引:1  
通过将交联聚乙烯醇硫酸酯化的方法制备了一种新型电刺激响应性聚乙烯醇硫酸钾(PVSK)智能水凝胶,并探讨了溶液离子强度和pH对PVSK水凝胶的溶胀吸水率、机械性能以及电机械化学行为的影响.结果表明,制备的PVSK水凝胶的平衡溶胀比随NaCl溶液离子强度的增大而减小,在pH2.39~10.83范围内基本不受溶液pH的影响;经不同离子强度和pH的NaCl溶液充分溶胀的PVSK水凝胶具有良好的机械性能,在非接触的直流电场作用下,该水凝胶向电场负极弯曲,凝胶的弯曲速度和弯曲偏转量随外加电场强度的增加而增大,随NaCl溶液离子强度的增大出现临界最大值,但不随溶液pH(2.08~10.53)的改变而改变;在循环电场作用下,PVSK水凝胶的电机械化学行为具有良好的可逆性.  相似文献   

2.
Dual temperature‐ and pH‐sensitive hydrogels composed of N‐isopropylacrylamide (NIPAM) and 2‐acrylamido‐2‐methyl‐propanosulfonic acid (AMPS) were prepared by free‐radical crosslinking copolymerization in aqueous solution at 22 °C. The mole percent of AMPS in the comonomer feed was varied between 0.0 and 7.5, while the crosslinker ratio was fixed at 5.0/100. The effect of AMPS content on thermo‐ and pH‐ induced phase transitions as well as equilibrium swelling/deswelling, interior morphology and network structure was investigated. The volume phase transition temperature (VPT‐T) was determined by both swelling/deswelling measurements and differential scanning calorimetry (DSC) technique. In addition, the volume phase transition pH (VPT‐pH) was detected from the derivative of the curves of the swelling ratio (dQv/dpH) versus pH. The polymer‐solvent interaction parameter (χ) and the average molecular mass between crosslinks ( ) of hydrogels were calculated from swelling ratios in buffer solutions at various pHs. The enthalpy (ΔH) and entropy (ΔS) changes appearing in the χ parameter of hydrogels were also determined by using the modified Flory–Rehner equation. The negative values for ΔH and ΔS indicated that the hydrogels had a negative temperature‐sensitive property in water, that is, swelling at a lower temperature and shrinking at a higher temperature. It was observed that the experimental swelling data of hydrogels at different temperature agreed with the modified Flory‐Rehner approach based on the affine network model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1713–1724, 2008  相似文献   

3.
Novel superabsorbent hydrogels were prepared successfully from carboxymethylcellulose sodium (CMC) and cellulose in the NaOH/urea aqueous system by using epichlorohydrin (ECH) as cross-linker. The structure and morphology of the hydrogels were characterized by FT-IR spectroscope, thermogravimetric analysis and scanning electron microscope. The results revealed that the CMC contributed to the enhanced size of pore, whereas cellulose as a strong backbone in the hydrogel to support it for keeping its appearance. Their equilibrium swelling ratio in distilled water and different physiological fluids were evaluated, indicating the maximum swelling ratio in water reached an exciting level of 1000 as the hydrogels still keeping a steady appearance. Moreover, the hydrogels exhibited smart swelling and shrinking in NaCl or CaCl2 aqueous solution, as well as the release behavior of bovine serum albumin (BSA) that could be controlled by changing CMC content. The cellulose-based hydrogels are promising for the applications in the biomaterials area.  相似文献   

4.
New hydrogels were prepared from diepoxy‐terminated poly(ethylene glycol)s of approximate molecular weights 600, 1000, 2000, and 4000 Da and aliphatic primary diamines with different numbers of carbon atoms (ethylenediamine, 1,4‐diaminobutane, hexamethylenediamine, 1,8‐octanediamine, 1,10‐decanediamine, 1,12‐dodecanediamine), in water or ethanol–water mixture, depending on the amine solubility. The swelling behavior of these gels was tested in distilled water/aqueous solution at constant temperature and the equilibrium swelling degree (ESD) was determined for structurally different hydrogels and under various environmental conditions. It was shown that ESD was influenced by the molecular weight of PEG oligomers, amine/epoxy groups mole ratio, amine chain length, temperature, pH, and concentration of salts present in the swelling medium. Higher ESDs were obtained for either longer‐chain PEGs, non‐stoichiometric amine/epoxy groups ratio, shorter amines, acidic pH, lower temperatures, or in the absence of salts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.

The swelling behavior of acrylamide (AAm)–based polyampholyte hydrogels in water and in aqueous salt (NaCl) solutions was investigated. [(Methacrylamido)propyl]trimethyl‐ammonium chloride (MAPTAC) and acrylic acid (AAc) were used as the ionic comonomer in the hydrogel preparation. Three sets of hydrogels containing 70 mol% AAm and 30 mol% ionic comonomers of varying mole ratios were prepared. The variations of the hydrogel volume in response to changes in pH, and salt concentration were measured. As pH increases from 1, the hydrogel volume V eq in water first increases and reaches a maximum value at a certain pH. Then, it decreases again with a further increase in pH and attains a minimum value around the isoelectric point (IEP). After passing the collapsed plateau region, the gel reswells again up to pH=7.1. The reswelling of the collapsed gels containing 10 and 4% MAPTAC occurs as a first‐order phase transition at pH=5.85 and 4.35, respectively, while the hydrogel with 1% MAPTAC reswells continuously beyond its IEP. Depending on pH of the solution, the hydrogels immersed in salt solutions exhibit typical polyelectrolyte or antipolyelectrolye behavior. The experimental swelling data were compared with the predictions of the Flory‐Rehner theory of swelling equilibrium including the ideal Donnan equilibria. It was shown that the equilibrium swelling theory qualitatively predicts the experimental behavior of polyampholyte hydrogels.  相似文献   

6.
Thermoresponsive hydrogels based on N-isopropylacrylamide, N-hydroxymethylacrylamide, and 2-hydroxyethyl methacrylate, poly(NIPAM–co-NHMAAm–co-HEMA), have been synthesized and their swelling—deswelling behavior studied as a function of NIPAM concentration, NIPAM/NHMAAm and NIPAM/HEMA mole ratio, and total monomer concentration. Copolymers varying in composition have been obtained by redox copolymerization of these three monomers. Temperature has been changed in the ranges from 4 to 70 °C at fixed pH and total ionic strength. Equilibrium swelling ratio, dynamic swelling ratio, and dynamic deswelling ratio were evaluated for all hydrogel systems. The equilibrium swelling ratios of the copolymeric gels decrease with increasing NHMAAm and HEMA content. The formation of the intermolecular hydrogen bonding between hydroxyl and amido groups decreases the hydrophilic group numbers of the gel and the affinity of the gel towards water decreases. The copolymer gels also showed rapid volume transitions with time. The time required for equilibrium shrinking increased with increasing NHMAAm and HEMA content in the gel.  相似文献   

7.
Stimuli‐responsive bioconjugated hydrogels that can respond to a target antigen (antigen‐responsive hydrogels) were prepared by introducing antigen‐antibody bindings as reversible crosslinks into the gel networks. The preparation conditions of the antigen‐responsive hydrogels and the mechanism of the antigen‐responsive behavior were investigated, focusing on bioconjugated hydrogel structures. This article also focuses on the effect of semi‐interpenetrating polymer network (semi‐IPN) structures on the antigen‐responsive swelling/shrinking behavior of bioconjugated hydrogels with antigen‐antibody bindings. The preparation conditions and the network structures of the bioconjugated hydrogels are discussed in relation to designing antigen‐responsive hydrogels. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2144–2157, 2009  相似文献   

8.
Hydrogels with various ionic group contents were prepared from acrylamide and crotonic acid (CrA) monomers with 0–12.9 mol % CrA in aqueous solutions by radiation‐induced polymerization and gelation with γ rays from a 60Co source. The volume swelling ratio of the poly(acrylamide/crotonic acid) hydrogels was investigated as a function of the pH and ionic strength of the swelling medium and the type of counterion in the swelling medium. The volume swelling ratio increased with an increase in pH and a decrease in the ionic strength. The volume swelling ratio of these hydrogels was evaluated with an equation, based on the Flory–Huggins thermodynamic theory, the James–Guth phantom network theory, and the Donnan theory of swelling of weakly charged ionic gels, that was modified here for the determination of the molecular weight between crosslinks (Mc) and the polymer–solvent interaction parameter (χ). The modified equation described very well the swelling behavior of the charged polymeric network. The same equation also provided the simultaneous measurement of these parameters for the systems investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1656–1664, 2003  相似文献   

9.
A pH and reduction dual‐stimuli‐responsive PEGDA/PAMAM injectable network hydrogel containing “acetals” as pH‐sensitive groups and “disulfides” as reducible linkages was designed and synthesized via aza‐Michael addition reaction between PAMAM and PEGDA diacrylates. The pore size and swelling ratio of hydrogels was varied from 14 ± 3 to 19 ± 4 μm and 214 ± 13 to 300 ± 19 μm, respectively, with varying ethylene glycol repeating units in diacrylates. The swelling ratio of PEGDA/PAMAM network hydrogel increased with increase in the molecular weight of PEG and with decrease in pH. The presence of different cationizable amino‐functionalities in PEGDA/PAMAM network hydrogel helped to enhance the swelling ability of hydrogel under the acidic conditions. The continuous increase in metabolically active live HeLa cells with time in MTT assay implied biocompatibility/noncytotoxicity of the synthesized PEGDA/PAMAM injectable network hydrogel. Furthermore, the prepared PEGDA/PAMAM hydrogel showed higher degradation at lower pH and at higher concentration of DTT. The burst release of doxorubicin from PEGDA/PAMAM hydrogel under the environment of the lower pH and in presence of DTT compared to the release at normal physiological pH and in absence of DTT suggested the potential ability of this model hydrogel system for targeted and selective anticancer drug release at tumor tissues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2080–2095  相似文献   

10.
A new kind of copolymeric hydrogel adsorbent containing hydrophilic groups that both provides swelling in water and chelates with uranyl ions was synthesized, and its adsorptive ability for recovering uranium from aqueous media was investigated. The uranyl adsorption capacities of poly(2‐hydroxyethyl methacrylate/maleic acid) hydrogels were determined with a polarographic technique to be 3.2–4.8 (mg UO/g dry gel) from a 15‐ppm uranyl nitrate solution at pH, 6 depending on the molar content of maleic acid in the hydrogel. Adsorption studies showed that other stimuli, the temperature, and the ionic strength of the solution also have important roles in the uranyl‐ion adsorption capacity of these hydrogels. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 277–283, 2001  相似文献   

11.
The polysaccharide, kappa‐carrageenan (κC) was chemically modified to achieve a novel superabsorbent hydrogel via graft copolymerization of methacrylamide (MAM) onto the substrate followed by alkaline hydrolysis. Ammonium persulfate (APS) and N,N′‐methylene bisacrylamide (MBA) were used as a free‐radical initiator and a crosslinker, respectively. The saponification reaction was carried out using sodium hydroxide aqueous solution. Either κC‐g‐PMAM or hydrolyzed κC‐g‐PMAM (PMAM: polymethacrylamide) was characterized by FT‐IR spectroscopy. The effect of grafting variables (i.e. concentration of MBA, MAM, and APS) and alkaline hydrolysis conditions (i.e. NaOH concentration, hydrolysis time and temperature) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The swelling capacity of these hydrogels was also measured in various salt solutions. Results indicated that the swelling ratios decreased with an increase in the ionic strength of the salt solutions. This behavior can be attributed to charge screening effect for monovalent cations, as well as ionic crosslinking for multivalent cations. Absorbency of superabsorbing hydrogels was examined in buffer solutions with pH range 1–13. Also, the pH reversibility and on–off switching behavior, at pH values 3.0 and 8.0, makes the synthesized hydrogels good candidates for controlled delivery of bioactive agents. Finally, swelling kinetics in distilled water and various salt solutions was preliminary investigated. Results showed that the swelling in water was faster than in saline solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
用顺丁烯二酸酐 (MAH)对具有分子包结能力的 β 环糊精 (β CD)进行化学改性 ,合成出了丁烯二酸单酯化 β CD单体 (MAH β CD) .通过氧化还原自由基引发MAH β CD与N 异丙基丙烯酰胺 (NIPA)聚合 ,合成出含 β CD结构单元的新型水凝胶 .用核磁共振、红外光谱及元素分析对MAH β CD单体及共聚物的结构和组成进行了表征 .溶胀研究结果表明 ,该水凝胶具有较好的pH、温度及离子强度敏感性 ;并且水凝胶在较高羧基(—COOH)含量和弱碱环境中 ,仍能表现出明显的温敏性  相似文献   

13.
辐射交联制备改性CMC水凝胶的溶胀行为研究   总被引:10,自引:0,他引:10  
利用丙烯酰胺 (AAm)接枝改性纤维素 ,然后进行羧甲基化反应得到高取代度的丙烯酰胺 羧甲基纤维素钠 (AAm CMC Na) .对该材料进行γ射线辐照制备出新型改性CMC水凝胶 .研究了这种水凝胶的溶胀动力学、交联动力学以及温度、pH值和无机盐浓度对水凝胶溶胀行为的影响 ,并与CMC Na水凝胶进行了比较 .结果表明 ,该水凝胶和CMC Na水凝胶相比 ,优点在于辐照交联所用的剂量下降 ,而且所需的CMC浓度减少 .AAm CMC Na水凝胶的溶胀度随温度升高而增大 ,在pH为 6~ 8范围内达到最大值 ,并随无机盐浓度与吸收剂量增加而下降 ,表现出较好的温度敏感性和pH敏感性 ,可望作为吸水材料和水保持剂  相似文献   

14.
pH‐sensitive poly(acrylamide‐co‐itaconic acid) [P(AAm/IA)] hydrogels were prepared by radiation induced copolymerization of acrylamide (AAm) and itaconic acid (IA) at various ratios. Swelling and shrinking behaviors of these hydrogels were found greatly dependent on the composition of the hydrogel and pH of the buffer solution. The basic structural parameters of the P(AAm/IA) networks such as the molecular weight between crosslinks (M c) and polymer–solvent interaction parameter (χ) were also determined using the modified Flory‐Rehner equations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2586–2594, 2004  相似文献   

15.
Ionically cross-linked polyampholytic hydrogels were synthesized by redox copolymerization of acrylamide and an ionic complex of (N,N-diethylamino)ethyl methacrylate and acrylic acid (designated as PADA hydrogel). The swelling behavior of the hydrogels in water indicated that a minimal equilibrium swelling ratio is found when the molar ratio of anionic/cationic monomers was 1.55. In NaCl solution, the hydrogels exhibited the typical swelling behavior of conventional polyampholytic gels. Their equilibrium swelling ratios increased with an increase in the NaCl concentration. In solutions of multivalent ions (CaCl2 and trisodium citrate solutions), the equilibrium swelling ratios of the hydrogels increased first and were then followed by a decrease with an increase in salt concentration. Interestingly, an unexpected abrupt swelling phenomenon was observed when the fully swollen hydrogels in salt solution were transmitted to pure water. The unique swelling behavior of PADA hydrogels depends not only on the molar ratio of the anionic/cationic monomers but also on the valency of the ions.  相似文献   

16.
A β-cyclodextrin (β-CD) based monomer (MAH-β-CD) containing vinyl and carboxyl functional groups was synthesized by reaction of β-CD with maleic anhydride (MAH). A novel hydrogel, poly(AAc-co-MAH-β-CD) with pH and ionic strength sensitivities, was prepared by irradiating the aqueous solution mixture of acrylic acid (AAc) and MAH-β-CD with electron beam. The effect of the feed ratio of the components and irradiation dose on the swelling and deswelling properties of the hydrogel was studied, respectively, the effect of pH and ionic strength on the swelling ratio was determined. Experimental results showed that these copolymer hydrogels did not show any noticeable change in swelling ratio at lower pH range (pH 1–3). However they showed an abrupt increase in swelling ratio at the range of pH 3–6, due to the ionization of carboxyl groups. Fourier transform infrared (FT-IR) spectrometer was applied in the attenuated total reflectance (ATR) mode for analyzing the structure change of the hydrogels after the treatment of different pH buffer solutions.  相似文献   

17.

A unique natural polymer based colon specific drug carrier was prepared from carboxymethyl cellulose (CMC) and acrylic acid (AAc) in aqueous solution employing γ‐radiation induced copolymerization and crosslinking. The effect of preparation conditions such as the natural polymer content and irradiation dose on gelation process was investigated. The swelling behavior of the prepared hydrogels was characterized by investigating the time and pH dependent swelling of the (CMC/AAc) hydrogels of different CMC content. The effects of the hydrogel composition and pH of the swelling medium on the swelling indices were estimated. The results show that the increment in the CMC content in the feed solution enhances the gelation process. The results also show the dependence of the swelling indices on both hydrogel composition and pH value of the swelling medium. To evaluate the ability of the prepared hydrogel to be used as a colon‐specific drug carrier, the release profile of theophylline was studied as a function of time at pH 1 and pH 7.  相似文献   

18.
In this work, a hemicellulose-containing hydrogel was synthesized. As the first step, a temperature- and pH-sensitive copolymer was synthesized from itaconic acid and N-isopropylacrylamide (NIPAAm). Then the hydrogel was prepared by reacting the copolymer with acylated hemicellulose and polyvinyl alcohol. The morphology, compressive strength, thermal stability, swelling/deswelling behavior, drug-release behavior performances of the hydrogels were investigated. The lower critical solution temperature of the hydrogels varied in 34–44°C when the NIPAAm and itaconic acid mass ratios ranged in 100/0–90/10. Both temperature and pH had a significant influence on equilibrium swelling ratio of hydrogels. The equilibrium swelling ratio increased with pH, but decreased with temperature. Cytocompatibility assay demonstrated that this hemicellulose-containing hydrogel was biocompatible. The release process of salicylic acid suggested that this hydrogel had a potential use in controlled drug release.  相似文献   

19.
以丙烯酸(AA)和丙烯酰氧乙基三甲基氯化铵(DAC)为单体, 采用水溶液聚合法制备了P(AA-DAC)聚电解质水凝胶. 采用红外光谱和核磁共振等方法对其结构进行了表征. 研究了不同组成比的聚电解质水凝胶在去离子水、不同pH值溶液以及不同离子强度盐溶液中的溶胀行为. 研究结果表明, 摩尔比为1∶1的聚电解质水凝胶表现出典型的两性聚电解质凝胶的溶胀行为. 离子强度对其溶胀行为有着显著影响, 在溶液离子强度较高时, 凝胶网络的溶胀主要受溶剂向凝胶内部扩散所控制, 满足Fick型扩散规律n≤0.5, 随着溶液离子强度的增加, 凝胶网络平衡含水量增加, 扩散系数增大.  相似文献   

20.
A series of superabsorbent hydrogels were prepared from carrageenan and partially neutralized acrylic acid by gamma irradiation at room temperature. The gel fraction, swelling kinetics and the equilibrium degree of swelling (EDS) of the hydrogels were studied. It was found that the incorporation of even 1% carrageenan (sodium salt) increases the EDS of the hydrogels from 320 to 800 g/g. Thermal analysis were carried out to determine the amount of free water and bound water in the hydrogels. Under optimum conditions, poly(acrylic acid)–carrageenan hydrogels with high gel fraction (80%) and very high EDS (800 g/g) were prepared gamma radiolytically from aqueous solution containing 15% partially neutralized acrylic acid and 1–5% carrageenan. The hydrogels were also found to be sensitive to the pH and the ionic strength of the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号