首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Histidine‐containing peptides are valuable therapeutic agents for a treatment of neurodegenerative diseases. However, the synthesis of histidine‐containing peptides is not trivial due to the potential of imidazole sidechain of histidine to act as a nucleophile if unprotected. A peptide ligation method utilizing the imidazole sidechain of histidine has been developed. The key imidazolate intermediate that acts as an internal acyl transfer catalyst during ligation is generated by deprotonation. Transesterification with amino acids or peptides tethered with C‐terminal thioester followed by N→N acyl shifts led to the final ligated products. A range of histidine‐containing dipeptides could be synthesized in moderate to good yields via this method without protecting the imidazole sidechain. The protocol was further extended to tripeptide synthesis via a long‐range N→N acyl transfer, and tetrapeptide synthesis.  相似文献   

2.
Coating of artificial surfaces with RGD (= arginine‐glycine‐aspartate) peptides to enhance cell adhesion is an ongoing issue. Thereby, the physiological adhesion process to the extra‐cellular matrix (ECM) is mimicked by the peptide coating, leading to a strong cell‐surface contact, followed by spreading and proliferation of the cells. For comparable cell adhesion studies, it is important to know the density of the RGD peptides on the surface. Here, we present an approach to determine the amount of bound cyclic RGD peptide by radio labeling with 125I of a tyrosine‐containing RGD peptide on different materials surfaces (poly(methyl methacrylate) (PMMA), titanium, and silicon). For all surfaces, the amount of bound peptides is in the range of pmol/cm1.  相似文献   

3.
Thermoreversible polymeric biomaterials are finding increased acceptance in tissue engineering applications. One drawback of the polymers is their synthetic nature, which does not allow direct interaction of mammalian cells with the polymers. This limitation may be alleviated by grafting arginine–glycine–aspartic acid (RGD) containing peptides onto the polymer backbone to facilitate interactions with cell‐surface integrins. Toward this goal, N‐isopropylacrylamide (NiPAM)‐based thermoreversible polymers containing amine‐reactive N‐acryloxysuccinimide (NASI) groups were synthesized. Conjugation of RGD‐containing peptides to polymers was demonstrated with 1H NMR spectroscopy and reverse‐phase high‐pressure liquid chromatography. The conjugation reaction was optimal at 4 °C and pH of 8.0, and increased with the increasing NASI content of polymers. With a peptide grafting ratio of 0.25 mol %, there was no significant change in the lower critical solution temperature of the polymers. Finally, the NASI‐containing polymers, cast as films, on tissue culture polystyrene, were shown to conjugate to RGD‐containing peptides and support C2C12 cell attachment. We conclude that NASI‐containing thermoreversible polymers are amenable for grafting biomimetic peptides to impart cell adhesiveness to the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3989–4000, 2003  相似文献   

4.
Poly(ethylene imine) (PEI), a highly cationic polymer, is being used for deoxyribonucleic acid (DNA) complexation and delivery into cells. To enhance the cellular uptake of polymer/DNA complexes, arginine–glycine–aspartic acid (RGD) peptides have been conjugated to PEI with N‐succinimidyl 3‐(2‐pyridyldithio)propionate (SPDP). This coupling scheme creates a disulfide‐linked conjugate, the stability of which in the presence of thiols is uncertain. We have investigated the conjugation of an RGD peptide, glycine–arginine–glycine–aspartic acid–serine–proline–cysteine (GRGDSPC), to PEI with SPDP and subsequently assessed the stability of the conjugates in the presence of two thiol compounds, mercaptoethanol and cysteine. SPDP effectively controls the extent of GRGDSPC substitution on PEI. The conjugates, however, are readily cleaved in the presence of the thiols; the cleavage is rapid (~50% cleavage in 2–4 h) and inversely related to the degree of peptide substitution on the polymers. The peptide coupling is stable in the absence of thiols, and its cleavage is strongly dependent on the pH of the medium but not on the ionic strength of the medium. We conclude that RGD peptides coupled to PEI are labile in the presence of physiological concentrations of thiols, and this should be taken into account when such polymer–peptide conjugates are used for DNA delivery. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6143–6156, 2004  相似文献   

5.
Intermolecular thermal-substitution reaction between aquaammineruthenium(III) complex and amino acid or imidazole derivative has been investigated in the solid state by the TG-DTA method. Pentaammineruthenium(III) complexes containing amino acid or imidazole derivative have been obtained directly by the thermal reactions. Glycine, β-alanine, and γ-aminobutyric acid coordinate to Ru(III) through their carbonyl oxygen, and imidazole does through its N(3) atom. Distinct coordination site is provided in the complex with histidine and/or adenine: the bonding site depends on the outer-sphere anion of aquaammine complex. The N(3) atom of the histidine and N(7) atom of the adenine coordinate to Ru(III) taking the paratoluenesulphonate salt of aquaammineruthenium(III) into the reaction. When the methanesulphonate salt is used, the nitrogen atom in the side-chain amino-group participates in complexation. Direct chelation of the glycine, histidine, and adenine to the deaquated cis-diaquatetraammineruthenium(III) complex has been confirmed.  相似文献   

6.
The intrinsic variation in the near-edge X-ray absorption fine structure (NEXAFS) spectra of peptides and proteins provide an opportunity to identify and map them in various biological environments, without additional labeling. In principle, with sufficiently accurate spectra, peptides (<50 amino acids) or proteins with unusual sequences (e.g., cysteine- or methionine-rich) should be differentiable from other proteins, since the NEXAFS spectrum of each amino acid is distinct. To evaluate the potential for this approach, we have developed X-SpecSim, a tool for quantitatively predicting the C, N, and O 1s NEXAFS spectra of peptides and proteins from their sequences. Here we present the methodology for predicting such spectra, along with tests of its precision using comparisons to the spectra of various proteins and peptides. The C 1s, N 1s, and O 1s spectra of two novel antimicrobial peptides, Indolicidin (ILPWKWPWWPWRR-NH2) and Sub6 (RWWKIWVIRWWR-NH2), as well as human serum albumin and fibrinogen are reported and interpreted. The ability to identify, differentiate, and quantitatively map an antimicrobial peptide against a background of protein is demonstrated by a scanning transmission X-ray microscopy study of a mixture of albumin and sub6.  相似文献   

7.
Equilibria of the axial ligation of benzyl(aquo)cobaloximes by imidazole, 1-methyl imidazole, histidine, histamine, glycine, ethyl glycine ester, thiourea and urea have been spectrophotometrically measured in aqueous solutions of ionic strength 1.0M (KCl) at 25°C as a function of pH. The equilibrium constants are in the order CN> 1-methyl imidazole > imidazole > histidine > histamine>glycine>ethyl glycine ester > thiourea > urea. The order of stability of benzyl(ligand)cobaloxime is explained based on the basicity of the ligand, Co(III) →>L dπ- pπback bonding and soft-soft and soft-hard interaction. Imidazole, substituted imidazoles, histidine and histamine form more stable complexes than glycine, ethyl glycine ester in contrast to the basicity of the ligands. Benzyl(ligand)cobaloximes were isolated and characterized by elemental analysis, IR and1H NMR spectra.  相似文献   

8.
Ultrathin glycine-water ice films have been prepared in ultrahigh vacuum by condensation of H(2)O and glycine at 90 K on single crystalline alumina surfaces and processed by soft x-ray (610 eV) exposure for up to 60 min. The physicochemical changes in the films were monitored using synchrotron x-ray photoemission spectroscopy. Two films with different amounts of H(2)O have been considered in order to evaluate the influence of the water ice content on the radiation-induced effects. The analysis of C1s, N1s, and O1s spectral regions together with the changes in the valence band spectra indicates that amino acid degradation occurs fast mainly via decarboxylation and deamination of pristine molecules. Enrichment of the x-ray exposed surfaces with fragments with carbon atoms without strong electronegative substituents (C-C and C-H) is documented as well. In the thinner glycine-water ice film (six layers of glycine + six layers of water) the 3D ice suffers strongly from the x-rays and is largely removed from the sample. The rate of photodecomposition of glycine in this film is about 30% higher than for glycine in the thicker film (6 layers of glycine + 60 layers of water). The photoemission results suggest that the destruction of amino acid molecules is caused by the direct interaction with the radiation and that no chemical attack of glycine by the species released by water radiolysis is detected.  相似文献   

9.
The C-terminal 20 and 30 amino acid sequences of Cap43 protein were chosen as models to study their interactions with Cu(II) ions. The behaviour of the 20 amino acid Ac-TRSRSH6TSEG-TRSRSH16TSEG and 30 amino acid Ac-TRSRSH6TSEG-TRSRSH16TSEG-TRSRSH26TSEG peptides towards Cu(II) ions at different pH values and different ligand-to-metal molar ratios, was examined. Spectroscopic (EPR, UV-Vis) and potentiometric techniques were performed to understand the details of metal binding to the peptides. The study showed that, starting from pH 4.0, each 10 amino acid fragment T1R2S3R4S5H6T7S8E9G10 was able to independently coordinate a single Cu(II) ion. The coordination mode involved the imidazole nitrogen of histidine H6 residue, and three amidic nitrogens from histidine H6, serine S5, and arginine R4 residues, respectively.  相似文献   

10.
We report here a procedure for the independent analysis of two groups of peptides by liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry (LC-MALDI MS/MS), using a selective isolation-detection procedure. In this procedure all primary amino groups of tryptic peptides derived from mouse liver proteins are blocked, restricting their positive charge, at acidic pH, to the presence of histidine and arginine residues. After strong cation exchange chromatography, multiply charged peptides (R + H > 1) are retained on the column and separated with high selectivity from singly (R + H = 1) and neutral peptides (R + H = 0) which are together collected in the flow-through. Using LC-MALDI-MS/MS analysis, the retained fraction displayed a 94% of enrichment of multiply charged peptides while in the flow-through; peptides with at least one arginine or histidine residue were exclusively identified, which suggests that MS detection in this fraction is restricted only to those peptides with ionizable side chains, arginine and histidine amino acids.  相似文献   

11.
The effects of the identity and position of basic residues on peptide dissociation were explored in the positive and negative modes. Low‐energy collision‐induced dissociation (CID) was performed on singly protonated and deprotonated heptapeptides of the type: XAAAAAA, AAAXAAA, AAAAAXA and AAAAAAX, where X is arginine (R), lysine (K) or histidine (H) residues and A is alanine. For [M + H]+, the CID spectra are dominated by cleavages adjacent to the basic residues and the majority of the product ions contain the basic residues. The order of a basic residue's influence on fragmentation of [M + H]+ is arginine > histidine ≈ lysine, which is also the order of decreasing gas‐phase basicity for these amino acids. These results are consistent with the side chains of basic residues being positive ion charge sites and with the more basic arginine residues having a higher retention (i.e. sequestering) of the positive charge. In contrast, for [M ? H]? the identity and position of basic residues has almost no effect on backbone fragmentation. This is consistent with basic residues not being negative mode charge sites. For these peptides, more complete series of backbone fragments, which are important in the sequencing of unknowns, can be found in the negative mode. Spectra at both polarities contain C‐terminal y‐ions, but yn+ has two more hydrogens than the corresponding yn?. Another major difference is the production of the N‐terminal backbone series bn+ in the positive mode and cn? in the negative mode. Thus, comparison of positive and negative ion spectra with an emphasis on searching for pairs of ions that differ by 2 Da (yn+ vs yn?) and by 15 Da (bn+ vs cn?) may be a useful method for determining whether a product ion is generated from the C‐terminal or the N‐terminal end of a peptide. In addition, a characteristic elimination of NH?C?NH from arginine residues is observed for deprotonated peptides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Gas-phase H/D exchange experiments with CD3OD and D2O and quantum chemical ab initio G3(MP2) calculations were carried out on protonated histidine and protonated histidine methyl ester in order to elucidate their bonding and structure. The H/D exchange experiments show that both ions have three equivalent fast hydrogens and one appreciably slower exchangeable hydrogen assigned to the protonated amino group participating in a strong intramolecular hydrogen bond (IHB) with the nearest N(sp2) nitrogen of the imidazole fragment and to the distal ring NH-group, respectively. It is taken for granted that the proton exchange in the IHB is much faster than the H/D exchange. Unlike in other protonated amino acids (glycine, proline, phenylalanine, tyrosine, and tryptophan) studied earlier, the exchange rate of the carboxyl group in protonated histidine is slower than that of the amino group. The most stable conformers and the enthalpies of neutral and protonated histidine and its methyl ester are calculated at the G3(MP2) level of theory. It is shown that strong intramolecular hydrogen bonding between the amino group and the imidazole ring nitrogen sites is responsible for the stability and specific properties of the protonated histidine. It is found that the proton fluctuates between the amino and imidazole groups in the protonated form across an almost vanishing barrier. Proton affinity (PA) of histidine calculated by the G3(MP2) method is 233.2 and 232.4 kcal mol(-1) for protonation at the imidazole ring and at the amino group nitrogens, respectively, which is about 3-5 kcal mol(-1) lower than the reported experimental value.  相似文献   

13.
We have used model tripeptides GXW (with X being one of the amino acid residues glycine (G), alanine (A), leucine (L), phenylalanine (F), glutamic acid (E), histidine (H), lysine (K), or arginine (R)) to study the effects of the basicity of the amino acid residue on the radical migrations and dissociations of odd‐electron molecular peptide radical cations M.+ in the gas phase. Low‐energy collision‐induced dissociation (CID) experiments revealed that the interconvertibility of the isomers [G.XW]+ (radical centered on the N‐terminal α‐carbon atom) and [GXW].+ (radical centered on the π system of the indolyl ring) generally increased upon increasing the proton affinity of residue X. When X was arginine, the most basic amino acid, the two isomers were fully interconvertible and produced almost identical CID spectra despite the different locations of their initial radical sites. The presence of the very basic arginine residue allowed radical migrations to proceed readily among the [G.RW]+ and [GRW].+ isomers prior to their dissociations. Density functional theory calculations revealed that the energy barriers for isomerizations among the α‐carbon‐centered radical [G.RW]+, the π‐centered radical [GRW].+, and the β‐carbon‐centered radical [GRWβ.]+ (ca. 32–36 kcal mol−1) were comparable with those for their dissociations (ca. 32–34 kcal mol−1). The arginine residue in these GRW radical cations tightly sequesters the proton, thereby resulting in minimal changes in the chemical environment during the radical migrations, in contrast to the situation for the analogous GGW system, in which the proton is inefficiently stabilized during the course of radical migration.  相似文献   

14.
Histidine functional block copolymers are thermally self‐assembled into polymer micelles with poly‐N‐isopropylacrylamide in the core and the histidine functionality in the corona. The thermally induced self‐assemblies are reversible until treated with Cu2+ ions at 50 °C. Upon treatment with 0.5 equivalents of Cu2+ relative to the histidine moieties, metal‐ion coordination locks the self‐assemblies. The self‐assembly behavior of histidine functional block copolymers is explored at different values of pH using DLS and 1H NMR. Metal‐ion coordination locking of the histidine functional micelles is also explored at different pH values, with stable micelles forming at pH 9, observed by DLS and imaged by atomic force microscopy. The thermal self‐assembly of glycine functional block copolymers at pH 5, 7, and 9 is similar to the histidine functional materials; however, the self‐assemblies do not become stable after the addition of Cu2+, indicating that the imidazole plays a crucial role in metal‐ion coordination that locks the micelles. The reversibility of the histidine‐copper complex locking mechanism is demonstrated by the addition of acid to protonate the imidazole and destabilize the polymer self‐assemblies. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1964–1973  相似文献   

15.
In order to investigate gas‐phase fragmentation reactions of phosphorylated peptide ions, matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass (MS/MS) spectra were recorded from synthetic phosphopeptides and from phosphopeptides isolated from natural sources. MALDI‐TOF/TOF (TOF: time‐of‐flight) spectra of synthetic arginine‐containing phosphopeptides revealed a significant increase of y ions resulting from bond cleavages on the C‐terminal side of phosphothreonine or phosphoserine. The same effect was found in ESI‐MS/MS spectra recorded from the singly charged but not from the doubly charged ions of these phosphopeptides. ESI‐MS/MS spectra of doubly charged phosphopeptides containing two arginine residues support the following general fragmentation rule: Increased amide bond cleavage on the C‐terminal side of phosphorylated serines or threonines mainly occurs in peptide ions which do not contain mobile protons. In MALDI‐TOF/TOF spectra of phosphopeptides displaying N‐terminal fragment ions, abundant b–H3PO4 ions resulting from the enhanced dissociation of the pSer/pThr–X bond were detected (X denotes amino acids). Cleavages at phosphoamino acids were found to be particularly predominant in spectra of phosphopeptides containing pSer/pThr–Pro bonds. A quantitative evaluation of a larger set of MALDI‐TOF/TOF spectra recorded from phosphopeptides indicated that phosphoserine residues in arginine‐containing peptides increase the signal intensities of the respective y ions by almost a factor of 3. A less pronounced cleavage‐enhancing effect was observed in some lysine‐containing phosphopeptides without arginine. The proposed peptide fragmentation pathways involve a nucleophilic attack by phosphate oxygen on the carbon center of the peptide backbone amide, which eventually leads to cleavage of the amide bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
《Analytical letters》2012,45(12):1429-1445
Abstract

Model peptides, Gly-Gly-Lys-Arg, Arg-Lys-Asp-Val-Tyr, and Pro-Gly-Lys-Ala-Arg were reductively alkylated with [2H6]acetone and sodium borohydride to assess the effects on peptide behavior. Lysine residues were converted to ?-N-isopropyllysine which eluted between phenylalanine and histidine on amino acid analysis. Amino terminal groups were also modified to an extent which depended on the particular peptide (glycine 100%, arginine 30%, and proline 10%-20%). High voltage paper electrophoresis of native and isopropylated peptides showed similar properties except for minor decreases in the mobility of the modified peptides due mainly to increased molecular weight. Isopropyllysine was not an effective substrate for trypsin, and α-N-isopropyl-amino acids did not form dansyl chloride derivatives. These findings should aid in the location, by peptide mapping techniques, of specific modified residues in reductively isopropylated proteins.  相似文献   

17.
Amino acid pools from strains ofEscherichia coli were extracted and analyzed. They were similar to each other in total amino acid composition: in all cases glutamate was the predominant amino acid. However, there were differences between strains in the relative abundance of some of the other amino acids. After arginine starvation or histidine starvation, arginine and histidine respectively were no longer present in detectable amounts in the amino acid pool. However, leucine was present in the pool of a leucine-starved culture, and glycine was present in the pool of a glycine-starved culture. On simultaneous with-drawal of exogenous arginine and histidine, neither amino acid could be detected in the pool. The presence of therel allele had no effect on the pool either of exponentially growing or of amino acid starved cultures. Isoleucine and valine were not detected in the pool of a downshifted, non-growing culture of an RCrel strain; the presence of these amino acids allowed growth to continue. This supports the hypothesis that the lag caused by the downshift is due to starvation for isoleucine and valine.  相似文献   

18.
Fluorenyl‐9‐methoxycarbonyl (Fmoc)‐diphenylalanine (Fmoc‐FF) and Fmoc‐arginine‐glycine‐­aspartate (Fmoc‐RGD) peptides self‐assemble to form a 3D network of supramolecular hydrogel (Fmoc‐FF/Fmoc‐RGD), which provides a nanofibrous network that uniquely presents bioactive ligands at the fiber surface for cell attachment. In the present study, mesenchymal stem cells (MSCs) in Fmoc‐FF/Fmoc‐RGD hydrogel increase in proliferation and survival compared to those in Fmoc‐FF/Fmoc‐RGE hydrogel. Moreover, MSCs encapsulated in Fmoc‐FF/Fmoc‐RGD hydrogel and induced in each defined induction medium undergo in vitro osteogenic, adipogenic, and chondrogenic differentiation. For in vivo differentiation, MSCs encapsulated in hydrogel are induced in each defined medium for one week, followed by injection into gelatin sponges and transplantation into immunodeficient mice for four weeks. MSCs in Fmoc‐FF/Fmoc‐RGD hydrogel increase in differentiation into osteogenic, adipogenic, and chondrogenic differentiation, compared to those in Fmoc‐FF/Fmoc‐RGE hydrogel. This study concludes that nanofibers formed by the self‐assembly of Fmoc‐FF and Fmoc‐RGD are suitable for the attachment, proliferation, and multi‐differentiation of MSCs, and can be applied in musculoskeletal tissue engineering.

  相似文献   


19.
We had previously reported that Mitsunobu-based introduction of alkyl substituents onto the imidazole N(π)-position of a key histidine residue in phosphothreonine-containing peptides can impart high binding affinity against the polo-box domain of polo-like kinase 1. Our current paper investigates the mechanism leading to this N(π)-alkylation and provides synthetic methodologies that permit the facile synthesis of histidine N(π)-modified peptides. These agents represent new and potentially important tools for biological studies.  相似文献   

20.
Histidine remained the last aromatic amino acid for which the intrinsic spectroscopic properties and structures were obscure. We measured the UV and IR spectra of protonated histidine, isolated in the gas phase, using photofragmentation cold ion spectroscopy. Unexpectedly, the UV absorption appears strongly redshifted relative to that of the cation in aqueous solutions. In investigating this phenomenon, we solved the geometries of all abundant conformers using IR conformer‐selective spectroscopy and ab initio quantum chemical calculations. In all of the structures, the proton resides on the imidazole ring. The measured UV spectra of protonated methylimidazole, histamine and histidine, together with calculations of the electronic spectra for the latter, suggest that, in comparison with other aromatic amino acids, such location of proton makes UV absorption of histidine highly sensitive to the local environment of its side chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号