首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel soluble donor‐acceptor low‐bandgap‐conjugated polymers consisting of different oligothiophene (OTh) coupled to electron‐accepting moiety 2‐pyran‐4‐ylidenemalononitrile (PM)‐based unit were synthesized by Stille or Suzuki coupling polymerization. The combination of electron‐accepting PM building block with varied OThn (the number of thiophene unit increases from 3 to 5) results in enhanced π–π stacking in solid state and intramolecular charge transfer (ICT) transition, which lead to an extension of the absorption spectra of the copolymers. Cyclic voltammetry measurements and molecular orbital distribution calculations indicate that the highest occupied molecular orbitals (HOMO) energy levels could be fine‐tuned by changing the number of thiophene units of the copolymers, and the resulting copolymers possessed relatively low HOMO energy levels promising good air stability and high‐open circuit voltage (Voc) for photovoltaic application. Bulk heterojunction photovoltaic devices were fabricated by using the copolymers as donors and (6,6)‐phenyl C61‐butyric acid methyl ester as acceptor. It was found that the highest Voc reached 0.94 V, and the short circuit currents (Jsc) were improved from 1.78 to 2.54 mA/cm2, though the power conversion efficiencies of the devices were measured between 0.61 and 0.99% under simulated AM 1.5 solar irradiation of 100 mW/cm2, which indicated that this series copolymers can be promising candidates for the photovoltaic applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2765–2776, 2010  相似文献   

2.
Novel series of conjugated copolymers, incorporating cyclopentadithiophene (CPDT) and the biselenophene ( R‐CPDT‐Se2 ), were synthesized by Pd‐catalyzed Stille coupling polymerization. The optical, electrochemical, field‐effect carrier mobilities, and photovoltaic properties of the R‐CPDT‐Se2 were investigated and compared with cyclopentadithiophene (CPDT) and the bithiophene ( EHex‐CPDT‐T2 ). The highest hole mobility of thin film transistor devices fabricated with new p‐type polymer semiconductors, Oct‐CPDT‐Se2 , was 1.3 × 10?3 cm2/Vs with an on/off ratio of about 105. The maximum power conversion efficiency of polymer solar cell fabricated with the blend of EHex‐CPDT‐Se2 /C71‐PCBM reached 1.86% with an open circuit voltage (VOC) of 0.55 V, a short circuit current density (Jsc) of 7.27 mA/cm2, and a fill factor (FF) of 0.47 under AM 1.5G irradiation (100 mW/cm2). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

3.
We have developed a ladder‐type dithienocyclopentathieno[3,2‐b]thiophene ( DTCTT ) hexacyclic unit in which the central thieno[3,2‐b]thiophene ring was covalently fastened to two adjacent thiophene rings through carbon bridges, thereby forming two connected cyclopentadithiophene ( CPDT ) units in a hexacyclic coplanar structure. This stannylated Sn‐DTCTT building block was copolymerized with three electron‐deficient acceptors, dibromo‐thieno[3,4‐c]pyrrole‐4,6‐dione ( TPD ), dibromo‐benzothiadiazole ( BT ), and dibromo‐phenanthrenequinoxaline ( PQX ), by Stille polymerization, thereby furnishing a new class of alternating donor–acceptor copolymers: PDTCTTTPD , PDTCTTBT , and PDTCTTPQX , respectively. Field‐effect transistors based on PDTCTTPQX and PDTCTTBT yielded high hole mobilities of 0.017 and 0.053 cm2 V?1 s?1, respectively, which are among the highest performances among amorphous donor–acceptor copolymers. A bulk heterojunction solar cell that incorporated PDTCTTTPD with the lower‐lying HOMO energy level delivered a higher Voc value of 0.72 V and a power conversion efficiency (PCE) value of 2.59 %.  相似文献   

4.
We report the synthesis, characterization, redox behavior, and n‐channel organic field‐effect (OFET) characteristics of a new class of thieno[3,2‐b]thiophene‐diketopyrrolopyrrole‐based quinoidal small molecules 3 and 4 . Under ambient atmosphere, solution‐processed thin‐film transistors based on 3 and 4 exhibit maximum electron mobilities up to 0.22 and 0.16 cm2 V?1 s?1, respectively, with on‐off current ratios (Ion/Ioff) of more than than 106. Cyclic voltammetry analysis showed that this class of quinoidal derivatives exhibited excellent reversible two‐stage reduction behavior. This property was further investigated by a stepwise reductive titration of 4 , in which sequential reduction to the radical anion and then the dianion were observed.  相似文献   

5.
A series of polymers based on 8,8′‐biindeno[2,1‐b]thiophenylidene for use in photovoltaic devices and field‐effect transistors are reported. These structurally twisted olefins are effective building blocks for preparation of low bandgap polymers with optical bandgaps of 1.2–1.5 eV. Device performance, such as Voc and Jsc, in solar cell devices could be successfully modulated by incorporation of a variety of comonomers. Ambipolar properties in field‐effect transistors using Au electrodes were also studied, with PtBTPDPP exhibiting balanced charge transport properties with hole and electron mobilities of 0.09 and 0.12 cm2·V?1·s?1, respectively. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 889–899  相似文献   

6.
The optical properties and electrical properties of a series of low‐band‐gap conjugated copolymers, in which alkyl side chains were substituted at various positions, were investigated using donor–acceptor conjugated copolymers consisting of a cyclopentadithiophene derivative and dithienyl‐benzothiadiazole. With substituted side chains, the intrinsic properties of the copolymers were significantly altered by perturbations of the intramolecular charge transfer. The absorption of poly[2, 6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3,4‐b′]dithiophene)‐alt‐4, 7‐bis(4‐octyl‐thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐ttOTBTOT ( P2 )], which assumed a tail–tail configuration, tended to blue shift relative to the absorption of poly[2,6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3,4‐b′]dithiophene)‐alt‐4,7‐bis (thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐TBTT ( P1 )]. The absorption of poly[2,6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3, 4‐b′]dithiophene)‐alt‐4,7‐bis(3‐octyl‐thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐hhOTBTOT ( P3 )], which assumed a head–head configuration, was blue shifted relative to that of P2 . The electrical transport properties of field‐effect transistors were sensitive to the side chain position. The field‐effect mobility in P2 (μ2 = 1.8 × 10?3 cm2/V s) was slightly lower than that in P1 (μ1 = 4.9 × 10?3 cm2/V s). However, the mobility of P3 was very low (μ3 = 3.8 × 10?6 cm2/V s). Photoexcitation spectroscopy showed that the charge generation efficiency (shown in transient absorption spectra) and polaron pair mobility in P1 and P2 were higher than in P3 , yielding P1 and P2 device performances that were better than the performance of devices based on P3 . © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A series of new functional poly(ethylene‐co‐vinyl alcohol)‐g‐polystyrene graft copolymers (EVAL‐g‐PS) with controlled molecular weight (Mn = 38,000–94,000 g mol?1) and molecular weight distribution (Mw/Mn = 2.31–3.49) were synthesized via a grafting from methodology. The molecular structure and component of EVAL‐g‐PS graft copolymers were confirmed by the analysis of their 1H NMR spectra and GPC curves. The porous films of such copolymers were fabricated via a static breath‐figure (BF) process. The influencing factors on the morphology of such porous films, such as solvent, temperature, polymer concentration, and molecular weight of polymer were investigated. Ordered porous film and better regularity was fabricated through a static BF process using EVAL‐g‐PS solution in CHCl3. Scanning electron microscopy observation reveals that the EVAL‐g‐PS graft copolymer is an efficient compatibilizer for the blend system of low‐density polyethylene/polystyrene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 516–524  相似文献   

8.
To obtain novel low‐bandgap materials with tailored hole‐transport properties and extended absorption, electron rich 3,4‐ethylenedioxythiophene is introduced as a comonomer in diketopyrrolo[3,4‐c]pyrrole copolymers with different aryl flanking units. The polymers are characterized by absorption and photoluminescence spectroscopy, dynamic scanning calorimetry, cyclic voltammetry, and X‐ray diffraction. The charge transport properties of these new materials are studied carefully using an organic field effect transistor geometry where the charge carriers are transported over a narrow channel at the semiconductor/dielectric interface. These results are compared to bulk charge carrier mobilities using space‐charge limited current (SCLC) measurements, in which the charge carrier is transported through the complete film thickness of several hundred nanometers. Finally, charge carrier mobilities are correlated with the electronic structure of the compounds. We find that in particular the thiophene‐flanked copolymer PDPP[T]2‐EDOT is a very promising candidate for organic photovoltaics, showing an absorption response in the near infrared region with an optical bandgap of 1.15 eV and a very high bulk hole mobility of 2.9 × 10?4 cm2 V?1 s?1 as measured by SCLC. This value is two orders of magnitudes higher than SCLC mobilities reported for other polydiketopyrrolopyrroles and is in the range of the well‐known hole transporting polymer poly(3‐hexylthiophene). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 639–648  相似文献   

9.
A series of new phenothiazine‐based donor–acceptor copolymers, P1 and P2, were synthesized via a Suzuki coupling reaction. The weight‐averaged molecular weights (Mw) of P1 and P2 were found to be 16,700 and 16,100, with polydispersity indices of 1.74 and 1.39, respectively. The UV–visible absorption spectra of the polymer thin films contained three strong absorption bands in the ranges 318–320 nm, 430–436 nm, and 527–568 nm. The absorption peaks at 320 and 430 nm originated mainly from the phenothiazine‐based monomer units, and the longer wavelength absorption band at 527–568 nm was attributed to the increased effective conjugation length of the polymer backbones. Solution‐processed field‐effect transistors fabricated with these polymers exhibited p‐type organic thin film transistor characteristics. The field‐effect mobilities of P1 and P2 were measured to be 1.0 × 10?4 and 7.5 × 10?5 cm2 V?1 s?1, respectively, with on/off ratios in the order of 104 for all polymers. A photovoltaic device in which a P2/PC71BM (1/3) blend film was used as the active layer exhibited an open‐circuit voltage (VOC) of 0.70 V, a short‐circuit current (JSC) of 6.79 mA cm(2, a fill factor of 0.39, and a power conversion efficiency of 1.86% under AM 1.5 G (100 mW cm?2) illumination. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Thienoisoindigo (TIIG) has emerged as an attractive building block for high‐performance organic optoelectronic devices. Here we report the first synthesis of a series of π‐conjugated TIIG‐based small molecules and alternating copolymers via direct C–H arylation, which enables the efficient synthesis without use of flammable and toxic orgametallic reagents in fewer steps compared Suzuki and Stille coupling. The direct arylation coupling between TIIG and two respective mono‐bromo aryl reactants clearly shows that the α‐H is more reactive than the β‐H in the thiophene unit of TIIG. The high regioselectivity of TIIG monomer warrants the successful synthesis of high‐quality alternating copolymers with minimal structural defects. PTIIG‐BT polymer synthesized via direct arylation polymerization (DAP) showed comparable molecular weight and hole mobility than the same polymer previously synthesized via Suzuki coupling. Moreover, the two new polymers (PTIIG‐TF and PTIIG‐2FBT) synthesized via DAP showed hole mobility up to 10?3 cm2 V?1 s?1 in FET devices fabricated and tested under ambient conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2015–2031  相似文献   

11.
Block and random copolymers of poly(3‐hexylthiophene) and poly[3‐(2‐(6‐carboxyhexyl)methyl)thiophene] with side‐chain carboxylic functionality ((P3HT‐b‐P3COOH) and (P3HT‐r‐P3COOH) were developed by Grignard Metathesis (GRIM) polymerization. The carboxylic functionality was introduced in the side chain via the oxazoline route. Both the block and random polythiophene copolymers were complexed with pyridine functionalized perylene bisimide to obtain supramolecular block and random polymer complexes. The complex formation in both systems was confirmed by 1H NMR, WXRD and SAXS studies. An expansion of d spacing upon complex formation was observed in both the block and random copolymer, which could be traced by WXRD. Hole and electron mobilities measured for the supramolecular complexes indicated values which were higher by an order of magnitude for the supramolecular block complex (μh ≈ 2.9 × 10−4 cm2/Vs; μe ≈ 3.1 × 10−6 cm2/Vs) as compared to the random (μh ≈ 1.4 × 10−5 cm2/Vs; μe ≈ 4.7 × 10−7 cm2/Vs) copolymer. These results are indicative of the higher degree of disorder prevailing in the films of random copolymer system compared to the block copolymer. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1574–1583  相似文献   

12.
New amorphous semiconducting copolymers, poly(9,9‐dialkylfluorene)‐alt‐(3‐dodecylthienyl‐divinylbenzene‐3‐dodecylthienyl) derivatives (PEFTVB and POFTVB), were designed, synthesized, and characterized. The structure of copolymers was confirmed by H NMR, IR, and elemental analysis. The copolymers showed very good solubility in organic solvents and high thermal stability with high Tg of 178–185 °C. The weight average molecular weight was found to be 107,900 with polydispersity of 3.14 for PEFTVB and 76,700 with that of 3.31 for POFTVB. UV–vis absorption studies showed the maximum absorption at 428 nm (in solution) and 435 nm (in film) for PEFTVB and at 430 nm (in solution) and 436 nm (in film) for POFTVB. Photoluminescence studies showed the emission at 498 nm (in solution) and 557 nm (in film) for PEFTVB and at 498 nm (in solution) and 536 nm (in film) for POFTVB. The solution‐processed thin‐film transistors showed the carrier mobility of 2 × 10?4 cm2 V?1 s?1 for PEFTVB‐based devices and 2 × 10?5 cm2 V?1 s?1 for POFTVB‐based devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3942–3949, 2010  相似文献   

13.
Low‐band gap selenophene‐based polymers were synthesized. Their optoelectronic and photovoltaic properties and space‐charge limited currents were compared with those of the related thiophene‐based polymers. The band gaps of the Se‐based derivatives were approximately 0.05–0.12 eV lower than those of their thiophene counterparts. Organic photovoltaic (OPV) devices based on the blends of these polymers and 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐C71 (PC71BM) were fabricated, and the maximum power conversion efficiency of the OPV device based on PSPSBT and PC71BM was 3.1%—with a short‐circuit current density (Jsc) of 9.3 mA cm?2, an open‐circuit voltage (Voc) of 0.79 V, and a fill factor of 0.42—under AM 1.5 G illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4550–4557  相似文献   

14.
Two well‐defined alternating π‐conjugated polymers containing a soluble electroactive benzo[1,2‐b:4,5‐b′]difuran (BDF) chromophore, poly(BDF‐(9‐phenylcarbazole)) (PBDFC), and poly(BDF‐benzothiadiazole) (PBDFBTD) were synthesized via Sonogashira copolymerizations. Their optical, electrochemical, and field‐effect charge transport properties were characterized and compared with those of the corresponding homopolymer PBDF and random copolymers of the same overall composition. All these polymers cover broad optical absorption ranges from 250 to 750 nm with narrow optical band gaps of 1.78–2.35 eV. Both PBDF and PBDFBTD show ambipolar redox properties with HOMO levels of ?5.38 and ?5.09 eV, respectively. The field‐effect mobility of holes varies from 2.9 × 10?8 cm2 V?1 s?1 in PBDF to 1.0 × 10?5 cm2 V?1 s?1 in PBDFBTD. Bulk heterojunction solar cell devices were fabricated using the polymers as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the electron acceptor, leading to power conversion efficiencies of 0.24–0.57% under air mass 1.5 illumination (100 mW cm?2). These results indicate that their band gaps, molecular electronic energy levels, charge mobilities, and molecular weights are readily tuned by copolymerizing the BDF core with different π‐conjugated units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
A series of soluble conjugated copolymers derived from 9,9‐dioctylfluorene (FO) and selenophene (SeH) was synthesized by a palladium‐catalyzed Suzuki coupling reaction with various feed ratios of SeH to FO less than or equal to 50%. The efficient energy transfer from fluorene segments to narrow band‐gap selenophene sites was observed. In comparison with the very well studied copolymer poly(fluorene‐co‐thiophene), poly(9,9‐dioctylfluorene‐co‐selenophene) (PFO‐SeH) shows redshifted photoluminescence (PL) and electroluminescence (EL) emission. PL spectra of the PFO‐SeH copolymers show a significant redshift along with increasing selenophene content in the copolymers and also with increasing polymer concentration in solution. PL quantum efficiency of the selenophene‐containing PFO copolymer is much lower than that of corresponding PFO‐thiophene (Th) copolymers. All these features of PFO‐SeH copolymers can be explained by the difference in aromaticity of selenophene and thiophene heterocycles and the heavy atom effect of Se in comparison with S‐atoms. The device fabricated with PFO‐SeH15 as the emissive layer exhibited high external quantum efficiency (0.51%) at a luminance of 1570 cd/m2. Device performance is limited by electron injection and the strong quenching effect of Se atoms. Devices with PFO‐SeH copolymers blended into PFO homopolymers show significant improvement in device performance. External quantum efficiency as high as 1.7% can be obtained for PFO‐SeH30/PFO blend devices. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 823–836, 2005  相似文献   

16.
New dithienothiophene‐containing conjugated polymers, such as poly(2,6‐bis(2‐thiophenyl‐3‐dodecylthiophene‐2‐yl)dithieno[3,2‐b;2′,3′‐d]thiophene, 4 and poly(2,6‐bis (2‐thiophenyl‐4‐dodecylthiophene‐2‐yl)dithieno[3,2‐b;2′,3′‐d]thiophene, 8 have been successfully synthesized via Stille coupling reactions using dodecyl‐substituted thiophene‐based monomers, bistributyltin dithienothiophene, and bistributyltin bithiophene; these polymers have been fully characterized. The main difference between the two polymers is the substitution position of the dodecyl side chains in the repeating group. Grazing‐incidence X‐ray diffraction (GI‐XRD) gave clear evidence of edge‐on orientation of polycrystallites to the substrate. The semiconducting properties of the two polymers have been evaluated in organic thin film transistors (OTFTs). The two conjugated polymers 4 and 8 exhibit fairly high hole carrier mobilities as high as μave = 0.05 cm2/Vs (ION/OFF = 3.42 × 104) and μave = 0.01 cm2/Vs, (ION/OFF = 1.3 × 105), respectively, after thermal annealing process. The solvent annealed films underwent reorganization of the molecules to induce higher crystallinity. Well‐defined atomic force microscopy (AFM) topography supported a significant improvement in TFT device performance. The hole carrier mobilities of the solvent annealed films are comparable to those obtained for a thermally annealed sample, and were one‐order higher than those obtained with a pristine sample. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
We report the synthesis, morphology, and charge‐transporting characteristics of new crystalline–crystalline diblock copolymers, poly(3‐hexylthiophene‐block‐stearyl acrylate) (P3HT‐b‐PSA). Three different diblock copolymers, P1 , P2 , and P3 , with P3HT/PSA polymerization degree block ratios of 60/26, 60/50, and 60/360, respectively, were prepared for investigating the morphology‐property relationship and the dependence of optoelectronic properties on the block copolymer structure. Small‐ and wide‐angle X‐ray scattering indicated the presence of both P3HT and PSA crystalline domains and the presence of microphase separation among blocks. The transmission electron microscopy and atomic force microscopy results revealed that the diblock copolymers cast from chlorobenzene, tended to form needle‐like morphologies. The field‐effect mobilities of the diblock copolymers deposited on untreated SiO2 substrates, decreased with increasing PSA block length. In a sharp contrast, the mobilities enhanced with increasing PSA content when the P3HT‐b‐PSA was deposited on phenyltrichlorosilane (PTS)‐treated substrates. The copolymers with a 60/360 P3HT/PSA ratio showed a good mobility of 4 × 10?3 cm2 V?1 s?1 and a high on/off ratio of 7 × 106 on PTS‐treated substrates. This study highlighted the importance of the block ratio, the substrate and self‐assembly structures on the charge transport characteristics of the crystalline–crystalline conjugated diblock copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Four new conjugated copolymers based on the moiety of bis(4‐hexylthiophen‐2‐yl)‐6,7‐diheptyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline (BTHTQ) were synthesized and characterized, including poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) (PBTHTQ), poly‐(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo‐[3,4‐g]quinoxaline‐alt‐2,5‐thiophene) (PTTHTQ), poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl) [1,2,5]‐thiadiazolo‐[3,4‐g]quinoxaline‐alt‐9,9‐dioctyl‐2,7‐fluore‐ne) (PFBTHTQ), and poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline‐alt‐1,4‐bis(decyloxy)phenylene) (PPBTHTQ). The λmax of PBTHTQ, PTTHTQ, PFBTHTQ, and PPBTHTP thin films was shown at 780, 876, 734, and 710 nm, respectively, with the corresponding optical band gaps (E) of 1.31, 1.05, 1.40, and 1.43 eV. The relatively small band gaps of the synthesized polymers suggested the significance of intramolecular charge transfer between the donor and TQ moiety. The estimated hole mobilities of PBTHTQ, PTTHTQ, and PFBTHTQ‐based field effect transistor devices using CHCl3 solvent were 8.5 × 10?5, 8.5 × 10?4, and 2.8 × 10?5 cm2 V?1 s?1, respectively, but significantly enhanced to 1.6 × 10?4, 3.8 × 10?3, and 1.5 × 10?4 cm2 V?1 s?1 using high boiling point solvent of chlorobenzene (CB). The higher hole mobility of PTTHTQ than the other two copolymers was attributed from its smaller band gap or ordered morphology [wormlike (chloroform) or needle‐like (CB)]. The characteristics of small band gap and high mobility suggest the potential applications of the BTHTQ‐based conjugated copolymers in electronic and optoelectronic devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6305–6316, 2008  相似文献   

19.
In this article, pendent thiophene (2‐butyl‐5‐octylthiophene) side chain is used to modify the backbone of the polymers containing benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD). Compared with the dodecyloxy side‐chained polymer (P1), pendent thiophene‐based polymers (P2 and P3) show similar number‐average molecular weight (Mn), polydispersity index, thermal stability (Td ~ 334–337 °C), and optical band gaps ( ) (~1.8 eV). Polymer (P2)‐based BDT with pendent thiophene and ethylhexyl‐modified TPD shows relatively low‐lying HOMO energy level (?5.52 eV) and nearly 1 V high open circuit voltage (VOC). The polymer solar cell devices based on three copolymers show power conversion efficiencies from 2.01% to 4.13%. The hole mobility of these polymers tested by space charge limited current method range from 3.4 × 10?4 to 9.2 × 10?4 cm2V?1s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1558–1566  相似文献   

20.
In this report, four donor–acceptor copolymers, P(NDT3‐BT), P(NDT3‐BO), P(NDF3‐BT), and P(NDF3‐BO), using 5,10‐didodecyl‐naphtho[1,2‐b:5,6‐b′]dithiophene (NDT3) or 5,10‐didodecyl‐naphtho[1,2‐b:5,6‐b′]difuran (NDF3) as an electron‐rich unit and benzodiathiazole (BT) or benzoxadiazole (BO) as an electron‐deficient one, were designed, synthesized, and characterized. Detailed systematical investigation was developed for studying the effect of the S/O atoms on the optical, electrochemical, and morphological properties of the polymers, as well as the subsequent performance of the organic field‐effect transistors (OFETs) fabricated from these copolymers. It was found that, compared with NDF3‐based P(NDF3‐BT)/P(NDF3‐BO), by replacing NDF3 with stronger aromatic NDT3, the resultant P(NDT3‐BT)/P(NDT3‐BO) show smaller lamellar distance with an increased surface roughness in solid state, and relatively higher hole mobilities are obtained. The hole mobilities of the four polymers based on OFETs varied from 0.20 to 0.32 cm2 V?1 s?1 depending on their molecular structures, giving some valuable insights for the further design and development of a new generation of semiconducting materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2465–2476  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号