首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Vinyl‐conjugated monomer (methyl acrylate, MA) and allyl 2‐bromopropanoate (ABP)‐possessing unconjugated C?C and active C? Br bonds were polymerized via the Cu(0)‐mediated simultaneous chain‐ and step‐growth radical polymerization at ambient temperature using Cu(0) as catalyst, N,N,N′,N″,N″‐pentamethyldiethylenetriamine as ligand and dimethyl sulfoxide as solvent. The conversion was reached higher than 98% within 20 h. The obtained polymers showed block structure consisting of polyester and vinyl polymer moieties. The Cu(0)‐catalyzed simultaneous chain‐ and step‐growth radical polymerization mechanism was demonstrated by NMR, matrix‐assisted laser desorption ionization time‐of‐flight, and GPC analyses. Furthermore, the obtained copolymers of MA and ABP were further modified with poly(N‐isopropylamide) through radical thiol‐ene “click” chemistry from the terminal double bond. The thermoresponsive behavior of this block copolymer was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3907–3916  相似文献   

2.
N‐alkyl urea peptoid oligomers containing glucose or mannose have been synthesized and characterized. The oligomers were subsequently polymerized using a step‐growth polymerization with hexamethylene diisocyanate. Equal moles of both monomers were used to guarantee high‐molecular weight polymers. The polymers were characterized by gel permeation chromatography, nuclear magnetic resonance, and Fourier‐transform infrared spectroscopy, and contact angle measurements of solvent cast thin films. Sulfation of the final polymers was achieved using a SO3/pyridine complex in pyridine to afford the heparin biomimetics. The average degree of sulfation was calculated to be 3.5 sulfates per saccharide as measured by elemental analysis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5230–5238  相似文献   

3.
A new di‐tert‐butyl acrylate (diTBA) monomer for controlled radical polymerization is reported. This monomer complements the classical use of tert‐butyl acrylate (TBA) for synthesis of poly(acrylic acid) by increasing the density of carboxylic acids per repeat unit, while also increasing the flexibility of the carboxylic acid side‐chains. The monomer is well behaved under Cu(II)‐mediated photoinduced controlled radical polymerization and delivers polymers with excellent chain‐end fidelity at high monomer conversions. Importantly, this new diTBA monomer readily copolymerizes with TBA to further the potential for applications in areas such as dispersing agents and adsorbents. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 801–807  相似文献   

4.
Proton transfer polymerization through thiol‐epoxy “click” reaction between commercially available and hydrophilic di‐thiol and di‐epoxide monomers is carried out under ambient conditions to furnish water‐soluble polymers. The hydrophilicity of monomers permitted use of aqueous tetrahydrofuran as the reaction medium. A high polarity of this solvent system in turn allowed for using a mild catalyst such as triethylamine for a successful polymerization process. The overall simplicity of the system translated into a simple mixing of monomers and isolation of the reactive polymers in an effortless manner and on any scale required. The structure of the resulting polymers and the extent of di‐sulfide defects are studied with the help of 13C‐ and 1H‐NMR spectroscopy. Finally, reactivity of the synthesized polymers is examined through post‐polymerization modification reaction at the backbone sulfur atoms through oxidation reaction. The practicality, modularity, further functionalizability, and water solubility aspects of the described family of new poly(β‐hydroxythio‐ether)s is anticipated to accelerate investigations into their potential utility in bio‐relevant applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3381–3386  相似文献   

5.
Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization has been known as a convenient method for the synthesis of polymers of designed molecular structures. Of particular interest are bifunctional or multifunctional chain‐transfer agents (CTAs) which could be employed in the development of advanced materials via RAFT polymerization. In the present study, four bifunctional 2‐(alkoxycarbonothioylthio) RAFT CTAs with ? COOH functionalities containing methoxy, ethoxy, isopropoxy, and octyloxy groups, respectively, were synthesized and characterized by FTIR and NMR spectroscopy. Polymerizations of vinyl acetate using these CTAs exhibited increased molecular weight with consumption of monomer and relatively narrow dispersities, indicative of living polymerization behavior. The effect of the concentration of 2‐(ethoxycarbonothioylthio) acetic acid on the polymerization was examined, revealing that higher concentration of CTA led to lower molecular weight and narrower dispersity. As an example of the application of the synthesized bifunctional CTAs, TiO2‐poly(vinyl acetate) (PVAc) nanocomposites were synthesized via a one‐pot process and characterized by TGA, DSC, TEM, and affinity test, suggesting attachment of PVAc onto the nano‐TiO2 particles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 606–618  相似文献   

6.
Well‐defined 1,4‐diketo‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole (DTDPP) labeled polycaprolactones (PCL) with different chain lengths were synthesized and characterized. The effect of polymer chain lengths on the optical properties of DTDPP in solid states was studied by UV‐Vis absorption spectroscopy as well as steady‐state and dynamic fluorescence spectroscopies. Our results indicate that when the PCL side chain is extended to a certain length, the intermolecular aggregation of DTDPP units can be reduced significantly due to segregation effect of PCL. This approach offers a new facile strategy to address the common problem of aggregation‐caused quenching existing in organic fluorophores. These highly fluorescent biodegradable PCL polymers may find broad biomedical applications such as fluorescence‐based bioimaging and tissue engineering. © 2015 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym. Chem. 2015 , 53, 1032–1042  相似文献   

7.
Ring‐opening polymerization of epoxidized methyloleate (EMO) with various ionic‐coordinative initiators have been studied and compared with other internal epoxy monomers: benzyl 9,10‐epoxyoleoylether and cis‐4,5‐epoxyoctane. The structure and molecular weight of the resulting polymers have been studied by 1H‐ and 13C‐NMR, MALDI‐TOF‐MS, and size exclusion chromatography analysis. Polymers with higher molecular weight than those obtained with conventional cationic catalyst are obtained. These materials have been found to consist of a complex mixture of cyclic and linear polymer chains with different chain ends that can be related to the catalyst nature and the occurrence of two main polymerization mechanisms, the cationic and the ionic‐coordinative. In the polymerization of EMO, transesterification by‐side reactions leading to ester linkages in the main chain have been identified. These undesired reactions have been suppressed by copolymerization with small amounts of tetrahydrofuran with no substantial decrease in the polymer yield and molecular weight. Finally, the polymerization of EMO has been tested in a larger scale to prepare a renewable resource‐based polyether as starting material to produce polyether polyols for polyurethane applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
New well‐defined brush polypyromellitimides with n‐octyloxy and n‐dodecyloxy side chains were prepared by two‐step polycondensations of 3,6‐di(n‐alkyloxy)pyromellitic dianhydrides with various conventional aromatic diamines. Their structures and properties were investigated and compared with those of polyimides without the side chains. The alkyloxylated poly(amic acid)s had inherent viscosities of 0.45–1.09 dL/g. The polyimides showed enhanced solubility in organic solvents and had layered structures in the solid state. As the side‐chain length increased from n‐octyloxy to n‐dodecyloxy, the extent of layered structure formation increased, whereas the glass‐transition temperature and thermal resistance decreased. As for the liquid‐crystal (LC) aligning ability measured with 4‐n‐pentyl‐4′‐cyanobiphenyl on rubbed thin‐film surfaces, all the side‐chain polyimides revealed homogeneous LC alignment parallel to the rubbing direction with distinctively higher pretilt angles than those of the polyimides without the side chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3130–3142, 2004  相似文献   

9.
Soluble hyperbranched glycopolymers were prepared by copolymerization of glycan monomers with reversible addition‐fragmentation chain transfer polymerization (RAFT) inimers in a simple one‐pot reaction. Two novel RAFT inimers, 2‐(methacryloyloxy)ethyl 4‐cyano‐4‐(phenylcarbonothioylthio)pentanoate (MAE‐CPP) and 2‐(3‐(benzylthiocarbonothioylthio)propanoyloxy)ethyl acrylate (BCP‐EA) were synthesized and used to prepare hyperbranched glycopolymers. Two types of galactose‐based saccharide monomers, 6‐O‐methacryloyl‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose (proGal‐M) and 6‐O‐(2′‐acrylamido‐2′‐methylpropanoate)‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose (proGal‐A), containing a methacrylate and an acrylamide group, respectively, were also synthesized and polymerized under the mediation of the MAE‐CPP and BCP‐EA inimers, respectively. In addition, hyperbranched poly(proGal‐M), linear poly(proGal‐A), and hyperbranched poly(proGal‐A) were generated and their polymerization kinetics were studied and compared. An unexpected difference was observed in the kinetics between the two monomers during polymerization: the relationship between polymerization rate and concentration of inimer was totally opposite in the two monomer–inimer systems. Branching analysis was conducted by using degree of branching (DB) as the measurement parameter. As expected, a higher DB occurred with increased inimer content. Furthermore, these polymers were readily deprotected by hydrolysis in trifluoroacetic acid solution resulting in water‐soluble polymers. The resulting branched glycopolymers have potential as biomimetics of polysaccharides. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The atom transfer radical bulk polymerization of styrene with FeX2 (X = Br or Cl)/tris(3,6‐dioxaheptyl) amine as the catalyst system was successfully implemented at 110 °C. The number‐average molecular weight of the polymers with a narrow molecular weight distribution (weight‐average molecular weight/number‐average molecular weight = 1.2–1.5) increased linearly with the monomer conversion and matched the predicted molecular weight. The polymerization rate, initiation efficiency, and molecular weight distribution were influenced by the selection of the initiator and iron halide. The high functionality of the halide end group in the obtained polymers was confirmed by both 1H NMR and a chain‐extension reaction. Because of its water solubility, the iron complexes could be removed easily from the reaction mixture through the washing of the polymerization mixture with water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 483–489, 2006  相似文献   

11.
Cobalt‐catalyzed [2 + 2 + 2] cocycloaddition reaction of 1,6‐diynes and nitriles to generate substituted pyridines has been applied to the polymerization of diyne–nitrile monomers, the reaction of which proceeded smoothly in a step‐growth fashion to provide linear polymers comprising pyridine structures in the main chain. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 345–351  相似文献   

12.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

13.
The preparation of triarylamine N‐functionalized 3,6‐linked carbazole homopolymers as well as alternating copolymers with 2,5‐diphenyl‐[1,3,4]oxadiazole and benzo[1,2,5]thiadiazole was undertaken using Suzuki cross‐coupling polymerization procedures associating 3,6‐bis(4,4,5,5‐tetramethyl‐[1,3,2]dioxaborolan‐2‐yl)‐9‐(bis[4‐(2‐butyl‐octyloxy)‐phenyl]‐amino‐phen‐4‐yl)‐carbazole and, respectively, 3,6‐dibromo‐9‐(bis[4‐(2‐butyl‐octyloxy)‐phenyl]‐amino‐phen‐4‐yl)‐carbazole, 2,5‐bis(4‐bromo‐phenyl)‐[1, 3,4]oxadiazole, and 4,7‐dibromo‐benzo[1,2,5]thiadiazole. Both the carbazole homopolymer and alternating copolymer with 2,5‐diphenyl‐[1,3,4]oxadiazole were found as wideband gap materials emitting in the blue part of the electromagnetic spectrum while the carbazole alternating copolymer with 4,7‐benzo[1,2,5]thiadiazole had a narrower band gap and emitted in the orange part of the electromagnetic spectrum. The new polymers are thermally stable up to 300 °C. A discussion of the electrochemical and optical properties of the new polymers is presented. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5957–5967, 2007.  相似文献   

14.
Oligomers and polymers containing triazole units were synthesized by the copper(I)‐catalyzed 1,3‐dipolar cycloaddition step‐growth polymerization of four difunctional azides and alkynes. In a first part, monofunctional benzyl azide was used as a chain terminator for the polyaddition of 1,6‐diazidohexane and α,ω‐bis(O‐propargyl)diethylene glycol, leading to polytriazole oligomers of controlled average degree of polymerization (DPn = 3–20), to perform kinetic studies on low‐viscosity compounds. The monitoring of the step‐growth click polymerization by 1H NMR at 25, 45, and 60 °C allowed the determination of the activation energy of this click chemistry promoted polyaddition process, that is, Ea = 45 ± 5 kJ/mol. The influence of the catalyst content (0.1–5 mol % of Cu(PPh3)3Br according to azide or alkyne functionalities) was also examined for polymerization kinetics performed at 60 °C. In a second part, four high molar mass polytriazoles were synthesized from stoichiometric combinations of diazide and dialkyne monomers above with p‐xylylene diazide and α,ω‐bis(O‐propargyl)bisphenol A. The resulting polymers were characterized by DSC, TGA, SEC, and 1H NMR. Solubility and thermal properties of the resulting polytriazoles were discussed based on the monomers chemical structure and thermal analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5506–5517, 2008  相似文献   

15.
Aqueous RAFT polymerization of N‐isopropylacrylamide (NIPAM) mediated with hydrophilic macro‐RAFT agent is generally used to prepare poly(N‐isopropylacrylamide) (PNIPAM)‐based block copolymer. Because of the phase transition temperature of the block copolymer in water being dependent on the chain length of the PNIPAM block, the aqueous RAFT polymerization is much more complex than expected. Herein, the aqueous RAFT polymerization of NIPAM in the presence of the hydrophilic macro‐RAFT agent of poly(dimethylacrylamide) trithiocarbonate is studied and compared with the homogeneous solution RAFT polymerization. This aqueous RAFT polymerization leads to the well‐defined poly(dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(dimethylacrylamide) (PDMA‐b‐PNIPAM‐b‐PDMA) triblock copolymer. It is found, when the triblock copolymer contains a short PNIPAM block, the aqueous RAFT polymerization undergoes just like the homogeneous one; whereas when the triblock copolymer contains a long PNIPAM block, both the initial homogeneous polymerization and the subsequent dispersion polymerization are involved and the two‐stage ln([M]o/[M])‐time plots are indicated. The reason that the PNIPAM chain length greatly affects the aqueous RAFT polymerization is discussed. The present study is anticipated to be helpful to understand the chain extension of thermoresponsive block copolymer during aqueous RAFT polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Phenacyl morpholine‐4‐dithiocarbamate is synthesized and characterized. Its capability to act as both a photoiniferter and reversible addition fragmentation chain transfer agent for the polymerization of styrene is examined. Polymerization carried out in bulk under ultra violet irradiation at above 300 nm at room temperature shows controlled free radical polymerization characteristics up to 50% conversions and produces well‐defined polymers with molecular weights close to those predicted from theory and relatively narrow poyldispersities (Mw/Mn ~ 1.30). End group determination and block copolymerization with methyl acrylate suggest that morpholino dithiocarbamate groups were attained at the end of the polymer. Photolysis and polymerization studies revealed that polymerization proceeds via both reversible termination and RAFT mechanisms. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3387–3395, 2008  相似文献   

17.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

18.
In this work, a benzenedinitrile functionalized monomer, 2‐methyl‐acrylic acid 6‐(3,4‐dicyano‐phenoxy)‐hexyl ester, was successfully polymerized via the reversible addition‐fragmentation chain transfer method. The polymerization behavior conveyed the characteristics of “living”/controlled radical polymerization: the first‐order kinetics, linear increase of number‐average molecular weight with monomer conversion, narrow molecular weight distribution, and successful chain‐extension experiment. The soluble Zn(II) phthalocyanine (Pc)‐containing (ZnPc) polymers were achieved by post‐polymerization modification of the obtained polymers. The Zn(II) phthalocyanine‐functionalized polymer was characterized by FTIR, UV–vis, fluorescence, atomic absorption spectroscopy, and thermogravimetric analysis. The potential application of above ZnPc‐functionalized polymer as electron donor material in bulk heterojunction organic solar cell was studied. The device with ITO/PEDOT:PSS/ZnPc‐Polymer/PC61BM/LiF/Al structure provided a power conversion efficiency of 0.014%, fill factor of 0.24, open circuit voltage (Voc) of 0.21 V, and short‐circuit current (Jsc) of 0.28 mA/cm2. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 691–698  相似文献   

19.
In this article, the synthesis and the functionalization of well‐defined, narrow polydispersity (polydispersity index < 1.2) star polymers via reversible addition‐fragmentation chain transfer polymerization is detailed. In this arm first approach, the initial synthesis of a poly(pentafluorophenyl acrylate) polymer, and subsequent, cross‐linking using bis‐acrylamide to prepare star polymers, has been achieved by reversible addition fragmentation chain transfer polymerization. These star polymers were functionalized using a variety of amino functional groups via nucleophilic substitution of pentafluorophenyl activated ester to yield star polymers with predesigned chemical functionality. This approach has allowed the synthesis of star glycopolymer using a very simple approach. Finally, the core of the stars was modified via thiol‐ene click chemistry reaction using fluorescein‐o‐acrylate and DyLigh 633 Maleimide. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
A series of poly[9‐(heptadecan‐9‐yl)‐9H‐carbazole‐2,7‐diyl‐alt‐(5,6‐bis‐(octyloxy)‐4,7‐di(thiophen‐2‐yl)benzo‐[1,2,5]‐thia‐diazole)‐5,5‐diyl] compositions containing various ratios of 3,6‐carbazole was synthesized for testing in a polymer solar cell. An appropriate amount of 3,6‐carbazole units incorporated into the copolymer improved intermolecular charge transport, whereas excess amount of 3,6‐carbazole units temporarily seized on the partial negative charge generated in the conjugation breaks. We extensively studied the effects of the incorporated 3,6‐carbazole units on the intermolecular interactions, which can affect nongeminated recombination in bulk heterojunction‐polymer solar cells. These properties were investigated using photocurrent‐ and light intensity‐dependent measurements and electrochemical impedance spectroscopy. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2047–2056  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号