首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic properties and STM topographical images of X (=F, H, O) functionalized silicene and germanene have been investigated by introducing various kind of vacancy clusters and chain patterns in monolayers within density functional theory (DFT) framework. The relative ease of formation of vacancy clusters and chain patterns is found to be energetically most favorable in hydrogenated silicene and germanene. F- and H-functionalized silicene and germanene are direct bandgap semiconducting with bandgap ranging between 0.1–1.9 eV, while O-functionalized monolayers are metallic in nature. By introducing various vacancy clusters and chain patterns in both silicene and germanene, the electronic and magnetic properties get modified in significant manner e.g. F- and H-functionalized silicene and germanene with hexagonal and rectangle vacancy clusters are non-magnetic semiconductors with modified bandgap values while pentagonal and triangle vacancy clusters induce metallicity and magnetic character in monolayers; hexagonal vacancy chain patterns induce direct-to-indirect gap transition while zigzag vacancy chain patterns retain direct bandgap nature of monolayers. Calculated STM topographical images show distinctly different characteristics for various type of vacancy clusters and chain patterns which may be used as electronic fingerprints to identify various vacancy patterns in silicene and germanene created during the process of functionalization.  相似文献   

2.
Two-dimensional allotropes of group-IV substrates including silicene, germanene and stanene have recently attracted considerable attention in nanodevice fabrication industry. These materials involving the buckled structure have been experimentally fabricated lately. In this study, first-principles density functional theory calculations were utilized to investigate the mechanical properties of single-layer and free-standing silicene, germanene and stanene. Uniaxial tensile and compressive simulations were carried out to probe and compare stress-strain properties; such as the Young’s modulus, Poisson’s ratio and ultimate strength. We evaluated the chirality effect on the mechanical response and bond structure of the 2D substrates. Our first-principles simulations suggest that in all studied samples application of uniaxial loading can alter the electronic nature of the buckled structures into the metallic character. Our investigation provides a general but also useful viewpoint with respect to the mechanical properties of silicene, germanene and stanene.  相似文献   

3.
Two‐dimensional group‐IV lattices silicene and germanene are known to share many of graphene's remarkable mechanical and electronic properties. Due to the out‐of‐plane buckling of the former materials, there are more means of electronic funtionalization, e.g. by applying uniaxial strain or an out‐of‐plane electric field. We consider monolayer hexagonal Sn (stanene) as an ideal candidate to feasibly implement and exploit graphene physics for nanoelectronic applications: with increased out‐of‐plane buckling and sizable spin–orbit coupling it lends itself to improved Dirac cone engineering. We investigate the ballistic charge transport regime of armchair Sn nanoribbons, classified according to the ribbon width W = {3m – 1, 3m, 3m + 1} with integer m. We study transport through (non‐magnetic) armchair ribbons using a combination of density functional theory and non‐equilibrium Green's functions. Sn ribbons have earlier current onsets and carry currents 20% larger than C/Si/Ge‐nanoribbons as the contact resistance of these ribbons is found to be comparable. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
张弦  郭志新  曹觉先  肖思国  丁建文 《物理学报》2015,64(18):186101-186101
基于密度泛函理论的第一性原理计算方法, 系统研究了硅烯、锗烯在GaAs(111) 表面的几何及电子结构. 研究发现, 硅烯、锗烯均可在As-中断和Ga-中断的GaAs(111) 表面稳定存在, 并呈现蜂窝状六角几何构型. 形成能计算结果证明了其实验制备的可行性. 同时发现硅烯、锗烯与GaAs表面存在共价键作用, 这破坏了其Dirac电子性质. 进一步探索了利用氢插层恢复硅烯、锗烯Dirac电子性质的方法. 发现该方法可使As-中断面上硅烯、锗烯的Dirac电子性质得到很好恢复, 而在Ga-中断面上的效果不够理想. 此外, 基于原子轨道成键和杂化理论揭示了GaAs表面硅烯、锗烯能带变化的物理机理. 研究结果为硅烯、锗烯在半导体基底上的制备及应用奠定了理论基础.  相似文献   

5.
秦志辉 《物理学报》2017,66(21):216802-216802
近年来,伴随石墨烯研究的深入开展,考虑到兼容半导体工业,构筑类石墨烯锗烯并探究其奇特电学性质已成为凝聚态物理领域的研究前沿.本文首先简要介绍了锗烯这一全新二维体系的理论研究进展,包括锗烯的几何结构、电子结构及其调控以及它们之间的关系.理论研究表明,因最近邻原子间距大,锗烯比硅烯更难构筑,实验上构筑锗烯颇具挑战性.针对这一问题,介绍了实验上制备锗烯的一些进展,重点介绍了金属表面外延制备锗烯,并对本征锗烯的制备及其在未来纳电子学器件的潜在应用做出了展望.  相似文献   

6.
We investigate the topological phases of silicene and germanene that arise due to the strong spin–orbit interaction in an external perpendicular magnetic field. Below and above a critical field of 10 T, respectively, we demonstrate for silicene under 3% tensile strain quantum spin Hall and quantum anomalous Hall phases. Not far above the critical field, and therefore in the experimentally accessible regime, we obtain an energy gap in the meV range, which shows that the quantum anomalous Hall phase can be realized experimentally in silicene, in contrast to graphene (tiny energy gap) and germanene (enormous field required). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Exploration of the unusual properties of the two‐dimensional materials silicene and germanene is a very active research field in recent years. This paper therefore reviews the latest developments, focusing both on the fundamental materials properties and on possible applications. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
The structural, energetic and electronic properties of germanene adsorbed with small nitrogen-based molecules, including N2, NH3, NO2 and NO, have been investigated by using first-principles calculations. The results show that all nitrogen-based molecules considered bind much stronger to germanene than to graphene due to the hybridized sp2-sp3 bonding of Ge atoms. The N2, NO and NO2 molecules all act as an acceptor, while the NH3 molecule donates electrons to germanene. We also found sizable band gaps (2–158 meV) are opened at the Dirac point of germanene through N2, NH3, and NO2 adsorptions, but with only slightly destroying its Dirac cone shape. The NO2 molecule also shows a heavy p-type doping character and makes germanene to be metallic. Moreover, when adsorbed by NO molecule, the germanene can change to be a ferromagnetic half-metal with 100% spin-polarization at the Fermi level. Overall, the different adsorption behaviors of small nitrogen-based gas molecules on germanene provide a feasible way to exploit chemically modified germanene for a wide range of practical applications, such as field-effect transistors, gas sensors and spintronic devices.  相似文献   

9.
Using density functional theory (DFT) with both the generalized gradient approximation (GGA) and hybrid functionals, we have investigated the structural, electronic and magnetic properties of a two-dimensional hydrogenated silicon-based material. The compounds, i.e. silicene, full- and half-hydrogenated silicene, are studied and their properties are compared. Our results suggest that silicene is a gapless semimetal. The coverage and arrangement of the absorbed hydrogen atoms on silicene influence significantly the characteristics of the resulting band structures, such as the direct/indirect band gaps or metallic/semiconducting features. Moreover, it is interesting to see that half-hydrogenated silicene with chair-like structure is shown to be a ferromagnetic semiconductor.  相似文献   

10.
Using first‐principles calculations, we investigate the mechanical and electronic properties of phosphorene nanosheets under tensile strains. It is found that phosphorene possesses a prominent anisotropic elasticity with the large anisotropic factor of 15.5. Along the armchair direction, the phosphorene sheet exhibits a high tensile ductility, characterized by a large elastic strain limit of 0.31. While in the zigzag direction, the critical strain of phosphorene is dictated by the phonon instability and the in‐plane soft mode occurs beyond the 0.22 strain. Under uniaxial strains, the band gaps of phosphorene can be modulated continuously, whose band features are also altered accordingly. A Dirac‐like band structure appears in phosphorene under adequate strains along the zigzag direction. More interestingly, these Dirac cones of phosphorene display evident anisotropy, which have high Fermi velocities up to (6 – 7) × 105 m/s along the armchair direction but drop to zero along the zigzag direction. With such a characteristic, the strained phosphorene sheet acts as an intriguing one‐dimensional metal, which enables the system many potential applications in power‐efficient and ultrafast nanodevices. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
Nanocelluloses are potential candidates for applications in flexible electronic due to their unique physical and mechanical properties. However, electrical properties of these materials have not investigated thoroughly to study their electrical properties. In the current work, electrical properties of nanocellulose films prepared from bagasse pulp were studied and compared with those of bagasse pulp fibers. Two kinds of nanocelluloses were used in the current study: microfibrillated cellulose (MFC) and TEMPO‐oxidized nanofibrillated cellulose (NFC). The crystallinity, grain size, and morphology of the different nanocelluloses were studied using X‐ray diffraction and transmission electron microscopy techniques. The dc‐, ac‐ electrical conductivity, dielectric constant ?′, and dielectric loss ?″ of non‐plasticized and glycerol‐plasticized nanocellulose films were studied in the temperature range from 298 to 373 K and in the frequency range from 0.1 KHz to 5 MHz. The results showed that the dc‐ electrical conductivity verifies Arrhenius equation and the activation energies varied in the range of 0.9 to 0.42 eV. Ac‐electrical conductivity increased with frequency and fitted with power law equation, which ensures that the conduction goes through hopping mechanism. The dielectric constant decreased with increasing frequency and increased with increasing temperature, probably due to the free movement of dipole molecular chains within the cellulose fiber. Glycerol‐plasticized NFC (NFC‐G) film had the highest dielectric constant and ac‐electrical conductivity values of 79 800 and 2.80× 10?3ohm?1 cm?1, respectively. The high values of dielectric constant and conductivity of the prepared films support their use in electronic components.  相似文献   

12.
硅烯具有独特的电子、光学、热学、力学以及量子特性,在电子器件、电极材料、储氢材料、催化剂和气体传感器等领域有巨大的潜在应用价值.本文采用基于密度泛函理论的第一性原理计算方法,利用Materials Studio软件中的CASTEP程序包对硅烯与CO分子之间的吸附行为进行了研究.重点研究了硅烯掺杂方式、CO分子吸附构型及硅烯空位缺陷浓度对CO分子吸附的影响,研究结果表明:1)空位缺陷硅烯对CO分子的吸附能力最强;2)碳原子垂直朝向空位缺陷硅烯更有利于CO分子的吸附;3)硅烯对CO分子的吸附能力随其空位浓度的增加显著增强;4)空位硅烯向CO分子转移电荷,电荷转移量与二者的吸附作用强弱呈正相关.该研究可为硅烯基CO气体传感器的设计提供理论指导.  相似文献   

13.
CO2 capture and storage technology is of key importance to reduce the greenhouse effect. By its large surface area and sp3 hybridization, Li‐functionalized silicene is demonstrated to be a promising CO2 absorbent that is stable up to at least 500 K and has a very high storage capacity of 28.6 mol/kg (55.7 wt%). The adsorption energy of CO2 on Li‐functionalized silicene is enhanced as compared to pristine silicene, to attain an almost ideal value that still facilitates easy release. In addition, the band gap is found to change sensitively with the CO2 coverage. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
We present first principles theory calculations on the mechanical and electronic properties of silicene and silicane structure under uniaxial tensile strain along different directions. Chirality effect is more significant in the mechanical properties of silicene than those of silicane. Different failure mechanisms are identified. A small band gap (up to 0.8 eV) is developed from zero with silicene structure under uniaxial tension and vanishes before the structure reaches its in-plane ultimate strength. However, a pre-existing band gap (2.39 eV) exists with silicane structure and decreases to zero with the increasing tensile strain without chirality effects.  相似文献   

15.
A series of cyclic esters of pentafluorophenylboronic acid have been obtained and their Lewis acidity evaluated experimentally by a modified Gutmann method. The results based on 31P NMR measurements were compared with those determined by quantum mechanical calculations at the DFT‐VSXC/pcS‐2 level of theory. The differences in Lewis acidity are discussed on the basis of electronic and geometric parameters. The calculations revealed that the complexes of investigated esters with Et3PO have multiple conformers of a wide range of calculated 31P NMR shielding constants. Additionally, a correlation between the calculated O‐B‐O angle of esters and the experimental acceptor number was found. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Infrared spectra at 300 and 77 K and Raman spectra at 300 K of the valpromide (Vpd), N‐substituted derivatives, N‐ethylvalpromide (Etvpd), N‐isopropylvalpromide (Ipvpd) and the N,N‐disubstituted derivative, N,N‐dimethylvalpromide (Dmvpd) with antiepileptic activity, have been measured and analyzed with results derived from computational chemistry calculation. In agreement with theoretical predictions, experimental data indicate that while in Etvpd, Dmvpd and Ipvpd there are four different conformational co‐existing components (Etvpd: TTCG+, TCCG, TTTC, G+G+C G+; Dmvpd: TTCC, GTTA+, G+ATC, G+AC A+; Ipvpd: TTCT, TCCT, TCCC, G TTT) in the Vpd there are only three distinct stable conformations of C1 symmetry group: TTC, TCT, G+G+T. Based on the accuracy of the B3LYP calculation, with the 6‐31 + G** basis set estimated by comparison between the predicted values of the vibrational modes and the available experimental data, we performed a structural and vibrational study of the amide group in the Vpd and their derivatives. We found that small nonplanarity deviations of C(O)N backbone induce significant changes on the structural and spectroscopic properties. These are not compatible with the decreasing of the resonance effect as it is produced when the twisting around the C(O) N increases. From the Natural Bond Orbital (NBO) analysis the existence of stabilizing electrostatic interactions of type C H···O/N and C H···H N/C, which induce significant structural changes and a complex electronic redistribution of charge on the π‐system in those structures becomes evident. We view this as a consequence of the filled electron density change Lewis‐type NBOs type lpO1, 2, lpN1, σ(C H)N acyl and empty non‐Lewis NBOs type σ*(C H)N acyl, σ*N H. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Silicene, a monolayer of silicon atoms arranged in a honeycomb lattice, has been undergoing rapid development in recent years due to its superior electronic properties and its compatibility with mature silicon-based semiconductor technology. The successful synthesis of silicene on several substrates provides a solid foundation for the use of silicene in future microelectronic devices. In this review, we discuss the growth mechanism of silicene on an Ag(111) surface, which is crucial for achieving high quality silicene. Several critical issues related to the electronic properties of silicene are also summarized, including the point defect effect, substrate effect, intercalation of alkali metal, and alloying with transition metals.  相似文献   

18.
《光谱学快报》2013,46(4-5):605-616
Abstract

Indoline‐2‐thione (BC), benzimidazole‐2‐thione (BN), benzoxazole‐2‐thione (BO), and benzothiazole‐2‐thione (BS) define an interesting series of aromatic compounds containing a NCS synthonic unit in a heterocyclic ring of five centers, substituted by atomic centers of the type C, N, O, or S, where the main electronic absorption bands are localized in the spectral range of ultraviolet A or B.

The first two singlet electronic transitions of this series, 1S01S1(n,π*) and 1S01S2(π,π*), determine the main spectroscopic characteristic of these compounds in order to be used as potential photochemical actinometers of solar ultraviolet radiation. Furthermore, the second electronic transition, localized in the 270–360 nm ultraviolet spectral range, presents a hipsochromic spectral shift as function of the electronic nature of the heteroatomic centers in the heterocyclic ring.

In order to determine a spectroscopic assignment of the main absorption bands in aqueous solution and analyze the effect of the substituent on the electronic charge distributions in the ground and the first two singlet excited electronic states, we have used a semiempirical molecular orbital calculation in the INDO/S‐CIS approach. On the other hand, we have carried out a molecular orbital calculation in the AM1 framework, in order to determine the energetic stability of the thiones with respect to the thiol compounds.  相似文献   

19.
高潭华 《物理学报》2015,64(7):76801-076801
采用密度泛函理论(DFT)广义梯度近似GGA和HSB06方法研究了氢化双层硅烯(silicene)的结构和电子性质, 结果表明: 氢化后的双层硅烯可能存在三种稳定的构型, AA椅型、AB椅型和AA船型, 其中AA椅型和AB椅型结构最为稳定, 氢化后这三种稳定构型材料的性质由零带隙的半金属(semimetal)转变为禁带宽度分别为1.208, 1.437和1.111 eV 的间接带隙的半导体, 采用混合泛函HSB06计算修正得到的带隙分别为1.595, 1.785 和1.592 eV. 进一步分析了在双轴应变下氢化双层硅烯的带隙随应变的关系, 得到应变可以连续的调节材料的带隙宽度, 这些性质有可能应用于未来的纳米电子器件.  相似文献   

20.
《Current Applied Physics》2018,18(8):933-940
In this study, we report the construction of a ternary flexible nanocomposite of bacterial cellulose/graphene/polyaniline (BC/GE/PANI) via a facile two-step strategy. Bacterial cellulose/graphene (BC/GE) is first prepared by a novel in situ membrane-liquid-interface method, in which the three-dimensional continuous BC nanofibers can be maintained and the introduced GE can improve the mechanical properties mainly due to the uniform dispersion of GE in the BC matrix. To construct the effectively interconnected conductive paths between separated GE nanosheets, polyaniline (PANI) is simultaneously deposited on the surfaces of both BC nanofibers and GE nanosheets to obtain BC/GE/PANI with excellent electrical conductivity. It is found that the as-prepared BC/GE/PANI has an electrical conductivity of 1.7 ± 0.1 S cm−1, which is higher than most of PANI-based composites. It is believed that the BC/GE/PANI nanocomposite possesses great potential for applications in electromagnetic shielding and flexible electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号