首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical approach is developed for the nonlinear oscillation of a conservative, two-degree-of-freedom (TDOF) mass-spring system with serial combined linear–nonlinear stiffness excited by a constant external force. The main idea of the proposed approach lies in two categories, the first one is the transformation of two nonlinear differential equations of a two-mass system using suitable intermediate variables into a single nonlinear differential equation. Another is the treatment a quadratic nonlinear oscillator (QNO) by the modified Lindstedt–Poincaré (L-P) method presented recently by the authors. The first-order and second-order analytical approximations for the modified L-P method are established for the QNOs with satisfactory results. After solving the nonlinear differential equation, the displacements of two-mass system can be obtained directly from the governing linear second-order differential equation. Unlike the common perturbation method, the modified L-P method is valid for weak as well as strong nonlinear oscillation systems. On the other hand, the new approach yields simple approximate analytical expressions valid for small as well as large amplitudes of oscillation. In short, this new approach yields extended scope of applicability, simplicity, flexibility in application, and avoidance of complicated numerical integration as compared to the previous approaches such as the perturbation and classical harmonic balance methods. Two examples of nonlinear TDOF mass-spring systems excited by a constant external force are selected and the approximate solutions are verified with the exact solutions derived from the Jacobi elliptic function and also the numerical fourth-order Runge–Kutta solutions.  相似文献   

2.
A new approximate analytical approach for accurate higher-order nonlinear solutions of oscillations with large amplitude is presented in this paper. The oscillatory system is subjected to a non-rational restoring force. This approach is built upon linearization of the governing dynamic equation associated with the method of harmonic balance. Unlike the classical harmonic balance method, simple linear algebraic equations instead of nonlinear algebraic equations are obtained upon linearization prior to harmonic balancing. This approach also explores large parameter regions beyond the classical perturbation methods which in principle are confined to problems with small parameters. It has significant contribution as there exist many nonlinear problems without small parameters. Through some examples in this paper, we establish the general approximate analytical formulas for the exact period and periodic solution which are valid for small as well as large amplitudes of oscillation.  相似文献   

3.
An analytical approximate technique for large amplitude oscillations of a class of conservative single degree-of-freedom systems with odd non-linearity is proposed. The method incorporates salient features of both Newton's method and the harmonic balance method. Unlike the classical harmonic balance method, accurate analytical approximate solutions are possible because linearization of the governing differential equation by Newton's method is conducted prior to harmonic balancing. The approach yields simple linear algebraic equations instead of non-linear algebraic equations without analytical solution. With carefully constructed iterations, only a few iterations can provide very accurate analytical approximate solutions for the whole range of oscillation amplitude beyond the domain of possible solution by the conventional perturbation methods or harmonic balance method. Three examples including cubic-quintic Duffing oscillators are presented to illustrate the usefulness and effectiveness of the proposed technique.  相似文献   

4.
Based on temporal rescaling and harmonic balance, an extended asymptotic perturbation method for parametrically excited two-degree-of-freedom systems with square and cubic nonlinearities is proposed to study the nonlinear dynamics under 1:2 internal resonance. This asymptotic perturbation method is employed to transform the two-degree-of-freedom nonlinear systems into a four-dimensional nonlinear averaged equation governing the amplitudes and phases of the approximation solutions. Linear stable analysis at equilibrium solutions of the averaged equation is done to show bifurcations of periodic motion and homoclinic motions. Furthermore, analytical expressions of homoclinic orbits and heteroclinic cycles for the averaged equation without dampings are obtained. Considering the action of the damping, the bifurcations of limit cycles are also investigated. A concrete example is further provided to discuss the correctness and accuracy of the extended asymptotic perturbation method in the case of small-amplitude motion for the two-degree-of-freedom nonlinear system.  相似文献   

5.
This paper deals with non-linear oscillation of a conservative system having inertia and static non-linearities. By combining the linearization of the governing equation with the method of harmonic balance, we establish analytical approximate solutions for the non-linear oscillations of the system. Unlike the classical harmonic balance method, linearization is performed prior to proceeding with harmonic balancing, thus resulting in a set of linear algebraic equations instead of one of non-linear algebraic equations. Hence, we are able to establish analytical approximate formulas for the exact frequency and periodic solution. These analytical approximate formulas show excellent agreement with the exact solutions, and are valid for small as well as large amplitudes of oscillation.  相似文献   

6.
An analytical approximate method for strongly nonlinear damped oscillators is proposed. By introducing phase and amplitude of oscillation as well as a bookkeeping parameter, we rewrite the governing equation into a partial differential equation with solution being a periodic function of the phase. Based on combination of the Newton’s method with the harmonic balance method, the partial differential equation is transformed into a set of linear ordinary differential equations in terms of harmonic coefficients, which can further be converted into systems of linear algebraic equations by using the bookkeeping parameter expansion. Only a few iterations can provide very accurate approximate analytical solutions even if the nonlinearity and damping are significant. The method can be applied to general oscillators with odd nonlinearities as well as even ones even without linear restoring force. Three examples are presented to illustrate the usefulness and effectiveness of the proposed method.  相似文献   

7.
A two-mass system is analyzed consisting of a self-excited basic system, which is mounted on a foundation subsystem consisting of a mass on a spring. The self-excitation is expressed in differential equations by a non-linear term of the second power. The efficiency of the self-excited vibration suppressing of different positive damping components in both the subsystems is investigated by means of analytical and numerical solution. Phase plane trajectories gained by numerical solution show the distortion of pure harmonic forms of oscillations presumed in analytical solution. Ranges of system parameters in which the approximate bifurcation diagrams coincide with numerical results are ascertained.  相似文献   

8.
IntroductionInrecentyears,withtheessentialadvantageoflightweightandhighrigidity ,sandwichplatesandshellshavebeenusedasanimportantpatternofstructuralelementsinaeronautical,astronauticalandnavalengineering .However,nonlinearproblemsforsandwichplatesandshellsareonlyinvestigatedbyafewbecauseofthedifficultiesofnonlinearmathematicalproblems.LiuRen_huaiandXuJia_chu[1,2 ]andothershavemadesomeinvestigationsinthisfield .Bifurcationofnonlinearvibrationforsandwichplateshasnotyetbeeninvestigated .Inthisp…  相似文献   

9.
Wu  B. S.  Lim  C. W.  He  L. H. 《Nonlinear dynamics》2003,32(1):1-13
This paper deals with nonlinear oscillations of a conservative,nonnatural, single-degree-of-freedom system with odd nonlinearity. Bycombining the linearization of the governing equation with the method ofharmonic balance, we establish approximate analytical solutions for thenonlinear oscillations of the system. Unlike the classical harmonicbalance method, the linearization is performed prior to proceeding withharmonic balancing thus resulting in linear algebraic equations insteadof nonlinear algebraic equations. Hence, we are able to establish theapproximate analytical formulas for the exact period and periodicsolution. These approximate solutions are valid for small as well aslarge amplitudes of oscillation. Two examples are presented toillustrate that the proposed formulas can give excellent approximateresults.  相似文献   

10.
近些年,很多学者致力于利用非线性增强振动响应减少的效果或者能量采集器的效率。因而非线性系统的响应值需要从理论计算方面更准确地预测。另外,根据学者已取得的研究成就,非线性能量汇(NES)中存在的立方刚度非线性可以将结构中宽频域的振动能量传递至非线性振子部分。文章将一种由NES和压电能量采集器组成的NES-piezo装置与两自由度主结构耦合连接,系统受谐和激励作用。文章采用谐波平衡法和复平均法分别推导了系统稳态响应,参照数值结果,对比两种近似解析方法在求解强非线性系统稳态响应时的异同。计算结果表明,系统体现较弱非线性时,二者计算结果差异很小;当系统体现强非线性时,复平均法不能准确地呈现系统高阶响应,提高阶数的谐波平衡法能更准确地表示系统响应值。基于谐波平衡法和数值算法,讨论NES-piezo装置对于系统宽频域减振的影响。与仅加入非线性能量汇情况对比,结果表明NES-piezo装置不会恶化宽频域减振效果,并且在第一阶共振频率附近,可以稍微提高结构减振效率。另外,计算结果也表明,采用恰当的NES-piezo装置可实现宽频域范围的结构减振和压电能量采集一体化。此项研究工作为研究不同情形强非线性系统的响应提供了理论方法的指导。另外,研究结果也为宽频域范围的结构减振和压电能量采集一体化提供了理论依据。  相似文献   

11.
衰减机械系统的非线性振荡可用来研究长约瑟夫逊结的电动力学方程式,而这方程式等同于弱衰减机械系统的非线性振荡。本文应用的方法是将控制方程线性化及结合谐波平衡法(线性谐波平衡法)而产生色散关系,再把平均法应用在弱非线性的耗散系统中得到非常准确的瞬变反应。在此提出的方法不仅考虑能量耗散,而且利用简单的线性代数等式关系来代替冗长及复杂的分析近似解。  相似文献   

12.
The primary resonances of a quadratic nonlinear system under weak and strong external excitations are investigated with the emphasis on the comparison of different analytical approximate approaches. The forced vibration of snap-through mechanism is treated as a quadratic nonlinear oscillator. The Lindstedt-Poincaré method, the multiple-scale method, the averaging method, and the harmonic balance method are used to determine the amplitude-frequency response relationships of the steady-state responses. It is demonstrated that the zeroth-order harmonic components should be accounted in the application of the harmonic balance method. The analytical approximations are compared with the numerical integrations in terms of the frequency response curves and the phase portraits. Supported by the numerical results, the harmonic balance method predicts that the quadratic nonlinearity bends the frequency response curves to the left. If the excitation amplitude is a second-order small quantity of the bookkeeping parameter, the steady-state responses predicted by the second-order approximation of the LindstedtPoincaré method and the multiple-scale method agree qualitatively with the numerical results. It is demonstrated that the quadratic nonlinear system implies softening type nonlinearity for any quadratic nonlinear coefficients.  相似文献   

13.
The present study deals with the response of a two-degree-of-freedom (2DOF) system with quadratic coupling under parametric and harmonic excitations. The method of multiple scale perturbation technique is applied to solve the nonlinear differential equations and obtain approximate solutions up to and including the second order approximations. All resonance cases are extracted and investigated. Stability of the system is studied using frequency response equations and phase-plane method. Numerical solutions are carried out and the results are presented graphically and discussed. The effects of the different parameters on both response and stability of the system are investigated. The reported results are compared to the available published work.  相似文献   

14.
Du  Hai-En  Er  Guo-Kang  Iu  Vai Pan  Li  Li-Juan 《Nonlinear dynamics》2023,111(10):9025-9047

In this paper, a new method named constrained parameter-splitting perturbation method for improving the solutions obtained from the parameter-splitting perturbation method is proposed for solving the problems in some extremal cases, such as the strongly nonlinear vibration of an Euler–Bernoulli cantilever. The proposed method takes the advantages of both the perturbation method and the harmonic balance method. The idea is that the solution obtained by the parameter-splitting perturbation method is substituted into the equation of motion and then the accumulative error of the equation is minimized for determining the unknown splitting parameters under the constraints constructed under the frame of harmonic balance method. The forced vibration of an oscillator with cubic geometric nonlinearity and inertia nonlinearity and the forced vibration of a planar microcantilever beam with a lumped tip mass are studied as examples to reveal the efficacy of the proposed method. The inspection of the steady-state response including its stability is conducted by means of comparing the frequency-response curves obtained by the proposed method with those obtained by the numerical continuation method and harmonic balance method, respectively, to show the efficacy and the advantages of the proposed method. Meanwhile, the nonlinear ordering effect on the solutions of the proposed method is also studied by comparing the results obtained by using different nonlinear orderings in the systems. In the last, we found through convergence examinations that it is necessary to have corrections to the erroneous solution which are obtained by harmonic balance method and Floquet theory in stability analysis.

  相似文献   

15.
A new approach is presented for establishing the analytical approximate solutions to general strong nonlinear conservative single-degree-of-freedom systems. Introducing two odd nonlinear oscillators from the original general nonlinear oscillator and utilizing the analytical approximate solutions to odd nonlinear oscillators proposed by the authors, we construct the analytical approximate solutions to the original general nonlinear oscillator. These analytical approximate solutions are valid for small as well as large oscillation amplitudes. Two examples are presented to illustrate the great accuracy and simplicity of the new approach.  相似文献   

16.
强非线性动力系统的频率增量法   总被引:6,自引:1,他引:5  
黄彪  宗国威  陈兆莹  胡敏 《力学学报》2001,33(2):242-249
提出一类强非线性动力系统的暧时频率增量法,将描述动力系统的二阶常微分方程,化为以相位为自变量、瞬廛频率为未知函数的积分方程;用谐波平衡原理,将求解瞬时频率的积分问题,归结为求解以频率增量的Fourier系数为独立变量的线性代数方程组;给出了若干例子。  相似文献   

17.
A symbolic algorithm is developed for the automatic generation of harmonic balance equations for multitone input for a class of nonlinear differential systems with polynomial nonlinearities. Generalized expressions are derived for the construction of balance equations for a defined multitone signal form. Procedures are described for determining combinations for a given output frequency from the desired set obtained from box truncated spectra and their permutations to automate symbolic algorithm. An application of method is demonstrated using the well-known Duffing–Van der Pol equation. Then the obtained analytical results are compared with numerical simulations to show the accuracy of the approach. The computation times for both the numerical solutions of equations versus the number of frequency components and the symbolic generation of the equations versus the power of nonlinearity are also investigated.  相似文献   

18.
The nonlinear behavior of an inclined cable subjected to a harmonic excitation is investigated in this paper. The Galerkin’s method is applied to the partial differential governing equations to obtain a two-degree-of-freedom nonlinear system subjected to harmonic excitation. The nonlinear systems in the presence of both external and 1:1 internal resonances are transformed to the averaged equations by using the method of averaging. The averaged equations are numerically examined to obtain the steady-state responses and chaotic solutions. Five cascades of period-doubling bifurcations leading to chaotic solutions, 3-periodic solutions leading to chaotic solution, boundary crisis phenomena, as well as the Shilnikov mechanism for chaos, are observed. In order to study the global dynamics of an inclined cable, after determining the averaged equations of motion in a suitable form, a new global perturbation technique developed by Kova?i? and Wiggins is used. This technique provides analytical results for the critical parameter values at which the dynamical system, through the Shilnikov type homoclinic orbits, possesses a Smale horseshoe type of chaos.  相似文献   

19.
In this paper, a refined asymptotic perturbation method for general nonlinear dynamical systems is proposed for the first time. This method can be considered as an alternative means for the traditional multiple scales method. Moreover, it is easier to be understood and used to carry out higher-order perturbation analysis. In addition, three examples including the Duffing equation, a system with quadratic and cubic nonlinearities to a subharmonic excitation, as well as the coupled van der Pol oscillator with parametrical excitations are investigated to illustrate the validity and usefulness of the proposed technique. The analytical and numerical results show good agreement.  相似文献   

20.
A Modified Perturbation Technique Depending Upon an Artificial Parameter   总被引:1,自引:1,他引:0  
He  Ji-Huan 《Meccanica》2000,35(4):299-311
In this paper, a modified perturbation method is proposed to search for analytical solutions of nonlinear oscillators without possible small parameters. An artificial perturbation equation is carefully constructed by embedding an artificial parameter, which is used as expanding parameter. It reveals that various traditional perturbation techniques can be powerfully applied in this theory. Some examples, such as the Duffing equation and the van der Pol equation, are given here to illustrate its effectiveness and convenience. The results show that the obtained approximate solutions are uniformly valid on the whole solution domain, and they are suitable not only for weak nonlinear systems, but also for strongly nonlinear systems. In applying the new method, some special techniques have been emphasized for different problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号