首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
Quantum fields are well known to violate the weak energy condition of general relativity: the renormalised energy density at any given point is unbounded from below as a function of the quantum state. By contrast, for the scalar and electromagnetic fields it has been shown that weighted averages of the energy density along timelike curves satisfy “quantum weak energy inequalities” (QWEIs) which constitute lower bounds on these quantities. Previously, Dirac QWEIs have been obtained only for massless fields in two-dimensional spacetimes. In this paper we establish QWEIs for the Dirac and Majorana fields of mass m≥ 0 on general four-dimensional globally hyperbolic spacetimes, averaging along arbitrary smooth timelike curves with respect to any of a large class of smooth compactly supported positive weights. Our proof makes essential use of the microlocal characterisation of the class of Hadamard states, for which the energy density may be defined by point-splitting. Received: 21 May 2001 / Accepted: 23 August 2001  相似文献   

2.
In the setting of vector-valued quantum fields obeying a linear wave-equation in a globally hyperbolic, stationary spacetime, it is shown that the two-point functions of passive quantum states (mixtures of ground- or KMS-states) fulfill the microlocal spectrum condition (which in the case of the canonically quantized scalar field is equivalent to saying that the two-pnt function is of Hadamard form). The fields can be of bosonic or fermionic character. We also give an abstract version of this result by showing that passive states of a topological *-dynamical system have an asymptotic pair correlation spectrum of a specific type. Received: 9 February 2000 / Accepted: 7 June 2000  相似文献   

3.
We give an introduction to the techniques from microlocal analysis that have successfully been applied in the investigation of Hadamard states of free quantum field theories on curved spacetimes. The calculation of the wave front set of the two point function of the free Klein‐Gordon field in a Hadamard state is reviewed, and the polarization set of a Hadamard two point function of the free Dirac field on a curved spacetime is calculated.  相似文献   

4.
We formulate quantum energy inequalities (QEIs) in the framework of locally covariant quantum field theory developed by Brunetti, Fredenhagen and Verch, which is based on notions taken from category theory. This leads to a new viewpoint on the QEIs, and also to the identification of a new structural property of locally covariant quantum field theory, which we call local physical equivalence. Covariant formulations of the numerical range and spectrum of locally covariant fields are given and investigated, and a new algebra of fields is identified, in which fields are treated independently of their realisation on particular spacetimes and manifestly covariant versions of the functional calculus may be formulated.  相似文献   

5.
The usual formulations of quantum field theory in Minkowski spacetime make crucial use of features—such as Poincaré invariance and the existence of a preferred vacuum state—that are very special to Minkowski spacetime. In order to generalize the formulation of quantum field theory to arbitrary globally hyperbolic curved spacetimes, it is essential that the theory be formulated in an entirely local and covariant manner, without assuming the presence of a preferred state. We propose a new framework for quantum field theory, in which the existence of an Operator Product Expansion (OPE) is elevated to a fundamental status, and, in essence, all of the properties of the quantum field theory are determined by its OPE. We provide general axioms for the OPE coefficients of a quantum field theory. These include a local and covariance assumption (implying that the quantum field theory is constructed in a local and covariant manner from the spacetime metric and other background structure, such as time and space orientations), a microlocal spectrum condition, an “associativity” condition, and the requirement that the coefficient of the identity in the OPE of the product of a field with its adjoint have positive scaling degree. We prove curved spacetime versions of the spin-statistics theorem and the PCT theorem. Some potentially significant further implications of our new viewpoint on quantum field theory are discussed.  相似文献   

6.
We characterise the homogeneous and isotropic gauge invariant and quasifree states for free Dirac quantum fields on Robertson–Walker spacetimes. Using this characterisation, we construct adiabatic vacuum states of order n corresponding to some Cauchy surface. It is demonstrated that any two such states (of sufficiently high order) are locally quasi-equivalent. We give a microlocal characterisation of spinor Hadamard states and we show that this agrees with the usual characterisation of such states in terms of the singular behaviour of their associated twopoint functions. The polarisation set of these twopoint functions is determined and found to have a natural geometric form. We finally prove that our adiabatic states of infinite order are Hadamard, and that those of order n correspond, in some sense, to a truncated Hadamard series and therefore allow for a point splitting renormalisation of the expected stress-energy tensor. Received: 30 June 1999 / Accepted: 21 September 2000  相似文献   

7.
As a starting point, we state some relevant geometrical properties enjoyed by the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds. Those properties are generalised to a larger class of expanding spacetimes M admitting a geodesically complete cosmological horizon common to all co-moving observers. This structure is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M, encompassing both the cosmological de Sitter background and a large class of other FRW spacetimes, the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables constructed on the cosmological horizon. There is exactly one pure quasifree state λ on which fulfills a suitable energy-positivity condition with respect to a generator related with the cosmological time displacements. Furthermore λ induces a preferred physically meaningful quantum state λ M for the quantum theory in the bulk. If M admits a timelike Killing generator preserving , then the associated self-adjoint generator in the GNS representation of λ M has positive spectrum (i.e., energy). Moreover λ M turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, λ M coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for λ M in more general spacetimes are presented. Dedicated to Professor Klaus Fredenhagen on the occasion of his 60th birthday.  相似文献   

8.
We show that a free Dirac quantum field on a globally hyperbolic spacetime has the following structural properties: (a) any two quasifree Hadamard states on the algebra of free Dirac fields are locally quasiequivalent; (b) the split-property holds in the representation of any quasifree Hadamard state; (c) if the underlying spacetime is static, then the nuclearity condition is satisfied, that is, the free energy associated with a finitely extended subsystem (``box') has a linear dependence on the volume of the box and goes like ∝Ts+1 for large temperatures T, where s+1 is the number of dimensions of the spacetime.  相似文献   

9.
A recent result by Borchers connecting geometric modular action, modular inclusion and spectrum condition, is applied in quantum field theory on spacetimes with a bifurcate Killing horizon (these are generalizations of black-hole spacetimes, comprising the familiar black-hole spacetime models). Within this framework, we give sufficient, model-independent conditions ensuring that the temperature of thermal equilibrium quantum states is the Hawking temperature.  相似文献   

10.
We study a new type of thermal state which is obtained by operating Hadamard operator on a thermal field. We call this new thermal state as quantum Hadamard’s thermal state (QHTS). The normally ordered form of QHTS is derived by using Weyl-ordering invariance under the similarity transformation and the Weyl correspondence scheme. We find that QHTS can be considered as squeezed state under certain conditions. The statistical properties of QHTS is also discussed.  相似文献   

11.
It is known that quantum mechanics can be interpreted as a non-Euclidean deformation of the space-time geometries by means Weyl geometries. We propose here a dynamical explanation of such approach by deriving Bohm potential from minimum condition of Fisher information connected to the entropy of a quantum system.  相似文献   

12.
We present an algorithm for constructing the Wilson operator product expansion (OPE) for perturbative interacting quantum field theory in general Lorentzian curved spacetimes, to arbitrary orders in perturbation theory. The remainder in this expansion is shown to go to zero at short distances in the sense of expectation values in arbitrary Hadamard states. We also establish a number of general properties of the OPE coefficients: (a) they only depend (locally and covariantly) upon the spacetime metric and coupling constants, (b) they satisfy an associativity property, (c) they satisfy a renormalization group equation, (d) they satisfy a certain microlocal wave front set condition, (e) they possess a “scaling expansion”. The latter means that each OPE coefficient can be written as a sum of terms, each of which is the product of a curvature polynomial at a spacetime point, times a Lorentz invariant Minkowski distribution in the tangent space of that point. The algorithm is illustrated in an example.  相似文献   

13.
The objective of this paper is twofold: (a) First the curvature collineations of the Bianchi type V spacetimes are studied using rank argument of curvature matrix. It is found that the rank of the 6×6 curvature matrix is 3, 4, 5 or 6 for these spacetimes. In one of the rank 3 cases the Bianchi type V spacetime admits proper curvature collineations which form infinite dimensional Lie algebra. (b) Then the Weyl collineations of the Bianchi type V spacetimes are investigated using rank argument of the Weyl matrix. It is obtained that the rank of the 6×6 Weyl matrix for Bianchi type V spacetimes is 0, 4 or 6. It is further shown that these spacetimes do not admit proper Weyl collineations, except in the trivial rank 0 case, which obviously form infinite dimensional Lie algebra. In some special cases it is found that these spacetimes admit Weyl collineations in addition to the Killing vectors, which are in fact proper conformal Killing vectors. The obtained conformal Killing vectors form four-dimensional Lie algebra.  相似文献   

14.
We show that the quantum state of a multiverse made up of classically disconnected regions of the space-time, whose dynamical evolution is dominated by a homogeneous and isotropic fluid, is given by a squeezed state. These are typical quantum states that have no classical counterpart and therefore allow analyzing the violation of classical inequalities as well as the EPR argument in the context of the quantum multiverse. The thermodynamical properties of entanglement are calculated for a composite quantum state of two universes whose states are quantum-mechanically correlated. The energy of entanglement between the positive and negative modes of a scalar field, which correspond to the expanding and contracting branches of a phantom universe, are also computed.  相似文献   

15.
In their well-known argument against the completeness of quantum theory, Einstein, Podolsky, and Rosen (EPR) made use of a state that strictly correlates the positions and momenta of two particles. We prove the existence and uniqueness of the EPR state as a normalized, positive linear functional of the Weyl algebra for two degrees of freedom. We then show that the EPR state maximally violates Bell's inequalities.  相似文献   

16.
A model-independent, locally generally covariant formulation of quantum field theory over four-dimensional, globally hyperbolic spacetimes will be given which generalizes similar, previous approaches. Here, a generally covariant quantum field theory is an assignment of quantum fields to globally hyperbolic spacetimes with spin-structure where each quantum field propagates on the spacetime to which it is assigned. Imposing very natural conditions such as local general covariance, existence of a causal dynamical law, fixed spinor- or tensor type for all quantum fields of the theory, and that the quantum field on Minkowski spacetime satisfies the usual conditions, it will be shown that a spin-statistics theorem holds: If for some of the spacetimes the corresponding quantum field obeys the “wrong” connection between spin and statistics, then all quantum fields of the theory, on each spacetime, are trivial. Received: 1 March 2001 / Accepted: 28 May 2001  相似文献   

17.
Cherednik attached to an affine Hecke algebra module a compatible system of difference equations, called quantum affine Knizhnik–Zamolodchikov (KZ) equations. In the case of a principal series module, we construct a basis of power series solutions of the quantum affine KZ equations. Relating the bases for different asymptotic sectors gives rise to a Weyl group cocycle, which we compute explicitly in terms of theta functions.For the spin representation of the affine Hecke algebra of type C, the quantum affine KZ equations become the boundary qKZ equations associated to the Heisenberg spin-\({\frac{1}{2}}\) XXZ chain. We show that in this special case the results lead to an explicit 4-parameter family of elliptic solutions of the dynamical reflection equation associated to Baxter’s 8-vertex face dynamical R-matrix. We use these solutions to define an explicit 9-parameter elliptic family of boundary quantum Knizhnik–Zamolodchikov–Bernard (KZB) equations.  相似文献   

18.
《Nuclear Physics B》1998,511(3):737-759
The weak energy condition is known to fail in general when applied to expectation values of the energy momentum tensor in flat space quantum field theory. It is shown how the usual counter arguments against its validity are no longer applicable if the states |ψ〉 for which the expectation value is considered are restricted to a suitably defined subspace. A possible natural restriction on |ψ〉 is suggested and illustrated by two quantum mechanical examples based on a simple perturbed harmonic oscillator Hamiltonian. The proposed alternative quantum weak energy condition is applied to states formed by the action of the scalar, vector and the energy momentum tensor operators on the vacuum. We assume conformal invariance in order to determine almost uniquely three-point functions involving the energy momentum tensor in terms of a few parameters. The positivity conditions lead to non-trivial inequalities for these parameters. They are satisfied in free field theories, except in one case for dimensions close to two. Further restrictions on |ψ〉 are suggested which remove this problem. The inequalities which follow from considering the state formed by applying the energy momentum tensor to the vacuum are shown to imply that the coefficient of the topological term in the expectation value of the trace of the energy momentum tensor in an arbitrary curved space background is positive, in accord with calculations in free field theories.  相似文献   

19.
Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.  相似文献   

20.
In the setting of asymptotically anti-de Sitter spacetimes, we consider Klein–Gordon fields subject to Dirichlet boundary conditions, with mass satisfying the Breitenlohner–Freedman bound. We introduce a condition on the \(\mathrm{b}\)-wave front set of two-point functions of quantum fields, which locally in the bulk amounts to the usual Hadamard condition, and which moreover allows to estimate wave front sets for the holographically induced theory on the boundary. We prove the existence of two-point functions satisfying this condition and show their uniqueness modulo terms that have smooth Schwartz kernel in the bulk and have smooth restriction to the boundary. Finally, using Vasy’s propagation of singularities theorem, we prove an analogue of Duistermaat and Hörmander’s theorem on distinguished parametrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号