首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
A detailed investigation of the hydration structure of Zn2+, Ni2+, and Co2+ in water solutions has been carried out combining X-ray absorption fine structure (EXAFS) spectroscopy and Molecular Dynamics (MD) simulations. The first quantitative analysis of EXAFS from hydrogen atoms in 3d transition metal ions in aqueous solutions has been carried out and the ion-hydrogen interactions have been found to provide a detectable contribution to the EXAFS spectra. An accurate determination of the structural parameters associated with the first hydration shell has been performed and compared with previous experimental results. No evidence of significant contributions from the second hydration shell to the EXAFS signal has been found for these solutions, while the inclusion of the hydrogen signal has been found to be important in performing a quantitative analysis of the experimental data. The high-frequency contribution present in the EXAFS spectra has been found to be due to multiple scattering (MS) effects inside the ion-oxygen first coordination shell. MD has been used to generate three-body distribution functions from which a reliable analysis of the MS contributions to the EXAFS spectra of these systems has been carried out.  相似文献   

6.
Pair interaction potentials (IPs) were defined to describe the La(3+)-OH(2) interaction for simulating the La(3+) hydration in aqueous solution. La(3+)-OH(2) IPs are taken from the literature or parametrized essentially to reproduce ab initio calculations at the second-order Moller-Plesset level of theory on La(H(2)O)(8) (3+). The IPs are compared and used with molecular dynamics (MD) including explicit polarization, periodic boundary conditions of La(H(2)O)(216) (3+) boxes, and TIP3P water model modified to include explicit polarization. As expected, explicit polarization is crucial for obtaining both correct La-O distances (r(La-O)) and La(3+) coordination number (CN). Including polarization also modifies hydration structure up to the second hydration shell and decreases the number of water exchanges between the La(3+) first and second hydration shells. r(La-O) ((1))=2.52 A and CN((1))=9.02 are obtained here for our best potential. These values are in good agreement with experimental data. The tested La-O IPs appear to essentially account for the La-O short distance repulsion. As a consequence, we propose that most of the multibody effects are correctly described by the explicit polarization contributions even in the first La(3+) hydration shell. The MD simulation results are slightly improved by adding a-typically negative 1r(6)-slightly attractive contribution to the-typically exponential-repulsive term of the La-O IP. Mean residence times are obtained from MD simulations for a water molecule in the first (1082 ps) and second (7.6 ps) hydration shells of La(3+). The corresponding water exchange is a concerted mechanism: a water molecule leaving La(H(2)O)(9) (3+) in the opposite direction to the incoming water molecule. La(H(2)O)(9) (3+) has a slightly distorded "6+3" tricapped trigonal prism D(3h) structure, and the weakest bonding is in the medium triangle, where water exchanges take place.  相似文献   

7.
A room temperature solid-state structural transformation was observed in 3 nm ZnS nanoparticles in methanol following the addition of water (Zhang et al., Nature 424, 1025, 2003). Experimental wide angle x-ray scattering (WAXS), x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectroscopy measurements show a large increase in crystallinity associated with water addition, in agreement with molecular dynamics (MD) predictions. Here we perform first-shell EXAFS and pair distribution function analysis and whole-nanoparticle calculations of WAXS, EXAFS and XANES to compare structural data with the MD predictions. The predicted WAXS patterns give excellent agreement with data, while the predicted EXAFS and XANES spectra give poor agreement. Relative to WAXS, XANES and EXAFS spectra contain additional structural information related to the distribution of disorder. The discrepancy between the x-ray diffraction and x-ray absorption results indicates that structural disorder is partitioned between interior and surface regions more strongly than predicted in the MD simulations.  相似文献   

8.
The solvation structure of Cu(2+) in methanol (MeOH) and dimethyl sulfoxide (DMSO) has been determined by studying both the extended X-ray absorption fine structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions of the K-edge absorption spectra. The EXAFS technique has been found to provide a very accurate determination of the next-neighbor coordination distances, but it is inconclusive in the determination of the coordination numbers and polyhedral environment. Conversely, quantitative analysis of the XANES spectra unambiguously shows the presence of an average 5-fold coordination in both the MeOH and DMSO solution, ruling out the usually proposed octahedral Jahn-Teller distorted geometry. The EXAFS and XANES techniques provide coherent values of the Cu-O first-shell distances that are coincident in the two solvents. This investigation shows that the combined analysis of the EXAFS and XANES data allows a reliable determination of the structural properties of electrolyte solutions, which is very difficult to achieve with other experimental techniques.  相似文献   

9.
Results of ab initio molecular dynamics (AIMD), quantum mechanics/molecular mechanics (QM/MM), and classical molecular dynamics (CMD) simulations of Cm(3+) in liquid water at a temperature of 300 K are reported. The AIMD simulation was based on the Car-Parrinello MD scheme and GGA-PBE formulation of density functional theory. Two QM/MM simulations were performed by treating Cm(3+) and the water molecules in the first shell quantum mechanically using the PBE (QM/MM-PBE) and the hybrid PBE0 density functionals (QM/MM-PBE0). Two CMD simulations were carried out using ab initio derived pair plus three-body potentials (CMD-3B) and empirical Lennard-Jones pair potential (CMD-LJ). The AIMD and QM/MM-PBE simulations predict average first shell hydration numbers of 8, both of which disagree with recent experimental EXAFS and TRLFS value of 9. On the other hand, the average first shell hydration numbers obtained in the QM/MM-PBE0 and CMD simulations was 9, which agrees with experiment. All the simulations predicted an average first shell and second shell Cm-O bond distance of 2.49-2.53 ? and 4.67-4.75 ? respectively, both of which are in fair agreement with corresponding experimental values of 2.45-2.48 and 4.65 ?. The geometric arrangement of the 8-fold and 9-fold coordinated first shell structures corresponded to the square antiprism and tricapped trigonal prisms, respectively. The second shell hydration number for AIMD QM/MM-PBE, QM/MM-PBE0, CMD-3B, and CMD-LJ, were 15.8, 17.2, 17.7, 17.4, and 16.4 respectively, which indicates second hydration shell overcoordination compared to a recent EXAFS experimental value of 13. Save the EXAFS spectra CMD-LJ simulation, all the computed EXAFS spectra agree fairly well with experiment and a clear distinction could not be made between configurations with 8-fold and 9-fold coordinated first shells. The mechanisms responsible for the first shell associative and dissociative ligand exchange in the classical simulations have been analyzed. The first shell mean residence time was predicted to be on the nanosecond time scale. The computed diffusion constants of Cm(3+) and water are in good agreement with experimental data.  相似文献   

10.
11.
应用扩展X射线吸收精细结构(EXAFS)光谱研究了CuCl2水溶液中Cu2+的区域环境结构,通过测定CuCl2水溶液在不同浓度条件下及冷冻-解冻(FT)处理前后CuK边EXAFS吸收谱,研究了浓度及冷冻-解冻处理对Cu2+第一配位层结构的影响.EXAFS实验结果表明,CuCl2水溶液中Cu2+第一配位层距离中心原子Cu最近邻原子为O原子,配位数介于3.0-4.3之间,Cu—O键长在0.192-0.198nm之间,这种结构与Cu2+的Jahn-Teller效应有关.不同浓度的CuCl2水溶液中Cu2+的区域环境结构有很大不同,随着CuCl2水溶液浓度的升高,Cu2+第一配位层配位数减小,Cu—O键伸长.结构参数拟合结果证实冷冻-解冻处理对Cu2+的区域环境结构有影响,CuCl2溶液经冷冻-解冻处理后,Cu2+第一配位层配位数变大,热无序度增加.  相似文献   

12.
13.
The hydration structure of Cr(2+) has been studied using molecular dynamics (MD) simulations including three-body corrections and combined ab initio quantum mechanical/molecular mechanical (QM/MM) MD simulations at the Hartree-Fock level. The structural properties are determined in terms of radial distribution functions, coordination numbers, and several angle distributions. The mean residence time was evaluated for describing ligand exchange processes in the second hydration shell. The Jahn-Teller distorted octahedral [Cr(H(2)O)(6)](2+) complex was pronounced in the QM/MM MD simulation. The first-shell distances of Cr(2+) are in the range of 1.9-2.8 A, which are slightly larger than those observed in the cases of Cu(2+) and Ti(3+). No first-shell water exchange occurred during the simulation time of 35 ps. Several water-exchange processes were observed in the second hydration shell with a mean residence time of 7.3 ps.  相似文献   

14.
We investigate the solvation structure of aqueous potassium ions, using a combination of electronic structure calculations, statistical mechanical simulations with a derived polarizable empirical potential and experimental measurement of the extended X-ray absorption fine structure (EXAFS) spectra. The potassium K-edge (at 3,608 eV) EXAFS spectra were acquired on the bending magnet of sector 20 at the Advanced Photon Source, at ambient conditions and for the concentrations of 1 and 4 m KCl. We focus on the coordination distances and the degree of disorder of the first hydration shell as determined by electronic structure calculations, molecular dynamics simulations and experimental measurement. Finally, we characterize the changes of the structure in the first hydration shell with increasing temperature as predicted by molecular simulation  相似文献   

15.
The structure of the hydrated calcium(II) ion in aqueous solution has been studied by means of extended X-ray absorption fine structure spectroscopy (EXAFS), large-angle X-ray scattering (LAXS), and molecular dynamics (MD) methods. The EXAFS data displayed a broad and asymmetric distribution of the Ca-O bond distances with the centroid at 2.46(2) A. LAXS studies on four aqueous calcium halide solutions (1.5-2 mol dm(-)(3)) gave a mean Ca-O bond distance of 2.46(1) A. This is consistent with a hydration number of 8 determined from correlations between mean distances and coordination numbers from crystal structures. The LAXS studies showed a second coordination sphere with a mean Ca.O(II) distance of 4.58(5) A, and for the hydrated halide ions the distances Cl.O 3.25(1) A, Br.O 3.36(1) A, and I.O 3.61(1) A were obtained. Molecular dynamics simulations of CaCl(2)(aq) were performed using three different Ca(2+)-OH(2) pair potentials. The potential from the GROMOS program gave results in agreement with experiments, i.e., a coordination number of 8 and an average Ca-O distance of 2.46 A, and was used for further comparisons. Theoretical EXAFS oscillations were computed for individual MD snapshots and showed very large variations, though the simulated average spectrum from 2000 snapshots gave satisfactory agreement with the experimental EXAFS spectra. The effect of thermal motions of the coordinated atoms is inherent in the MD simulation method. Thermal disorder parameters evaluated from simulated spatial atom distribution functions of the oxygen atoms coordinated to the calcium ion were in close agreement with those from the current LAXS and EXAFS analyses. The combined results are consistent with a root-mean-square displacement from the mean Ca-O distance of 0.09(2) A in aqueous solution at 300 K.  相似文献   

16.
17.
18.
Molecular dynamics simulations of the Hg2+ ion in aqueous solution have been carried out using an effective two-body potential derived from quantum mechanical calculations. A stable heptacoordinated structure of the Hg2+ first hydration shell has been observed and confirmed by extended X-ray absorption fine structure (EXAFS) experimental data. The structural properties of the Hg2+ hydration shells have been investigated using radial and angular distribution functions, while the dynamical behavior has been discussed in terms of reorientational correlation functions, mean residence times of water molecules in the first and second hydration shells, and self-diffusion coefficients. The effect of water-water interactions on the Hg2+ hydration properties has been evaluated using the SPC/E and TIP5P water models.  相似文献   

19.
This paper presents recent advances in the use of molecular simulations and extended X-ray absorption fine structure (EXAFS) spectroscopy, which enable us to understand solvated ions in solution. We report and discuss the EXAFS spectra and related properties governing solvation processes of different ions in water and methanol. Molecular dynamics (MD) trajectories are coupled to electron scattering simulations to generate the MD-EXAFS spectra, which are found to be in very good agreement with the corresponding experimental measurements. From these simulated spectra, the ion-oxygen distances for the first hydration shell are in agreement with experiment within 0.05-0.1 A. The ionic species studied range from monovalent to divalent, positive and negative: K+, Ca2+, and Cl-. This work demonstrates that the combination of MD-EXAFS and the corresponding experimental measurement provides a powerful tool in the analysis of the solvation structure of aqueous ionic solutions. We also investigate the value of electronic structure analysis of small aqueous clusters as a benchmark to the empirical potentials. In a novel computational approach, we determine the Debye-Waller factors for Ca2+, K+, and Cl- in water by combining the harmonic analysis of data obtained from electronic structure calculations on finite ion-water clusters, providing excellent agreement with the experimental values, and discuss how they compare with results from a harmonic classical statistical mechanical analysis of an empirical potential.  相似文献   

20.
Spectroscopic data are presented for the [V(OH(2))(6)](3+) and [Ru(OH(2))(6)](3+) cations, from which inferences are drawn regarding their structures in aqueous solution. EPR and absorption spectra of solutions and glasses are supplemented by spectra of the aqua ions in various crystalline environments, and the electronic and molecular structures inter-related through elementary angular overlap model calculations. It is concluded that in aqueous solution the [Ru(OH(2))(6)](3+) cation is localized in the all-horizontal D(3)(d)geometry, whereas the structure of the [V(OH(2))(6)](3+) cation is close to T(h) symmetry. These results are consistent with the most energetically favored geometries predicted by ab initio calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号