首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors present a joint experimental-theoretical study of collective diffusion properties in aqueous suspensions of charge-stabilized fluorinated latex spheres. Small-angle x-ray scattering and x-ray photon correlation spectroscopy have been used to explore the concentration and ionic-strength dependence of the static and short-time dynamic properties including the hydrodynamic function H(q), the wave-number-dependent collective diffusion coefficient D(q), and the intermediate scattering function over the entire accessible range. They show that all experimental data can be quantitatively described and explained by means of a recently developed accelerated Stokesian dynamics simulation method, in combination with a modified hydrodynamic many-body theory. In particular, the behavior of H(q) for de-ionized and dense suspensions can be attributed to the influence of many-body hydrodynamics, without any need for postulating hydrodynamic screening to be present, as it was done in earlier work. Upper and lower boundaries are provided for the peak height of the hydrodynamic function and for the short-time self-diffusion coefficient over the entire range of added salt concentrations.  相似文献   

2.
The structure factors, short- and long-time diffusion coefficients, and hydrodynamic interactions of concentrated poly(N-isopropylacryamide) microgel suspensions were measured with simultaneous static and dynamic three-dimensional cross-correlated light scattering. The data are interpreted through comparison to hard sphere theory. The structure factors are known to be described well by the hard sphere approximation. When the structure factor is fit to an effective hard sphere volume fraction and radius, the diffusion and hydrodynamic interactions are also well described by the hard sphere model. We demonstrate that one single hard sphere volume fraction is sufficient to describe the microgel structures, hydrodynamic interactions, and long- and short-time collective diffusion coefficients. This result is surprising because the particle form of the microgels at these temperatures is not rigid, but rather "fuzzy" spheres with dangling polymer chains.  相似文献   

3.
A comprehensive study is presented on the short-time dynamics in suspensions of charged colloidal spheres. The explored parameter space covers the major part of the fluid-state regime, with colloid concentrations extending up to the freezing transition. The particles are assumed to interact directly by a hard-core plus screened Coulomb potential, and indirectly by solvent-mediated hydrodynamic interactions. By comparison with accurate accelerated Stokesian Dynamics (ASD) simulations of the hydrodynamic function H(q), and the high-frequency viscosity η(∞), we investigate the accuracy of two fast and easy-to-implement analytical schemes. The first scheme, referred to as the pairwise additive (PA) scheme, uses exact two-body hydrodynamic mobility tensors. It is in good agreement with the ASD simulations of H(q) and η(∞), for smaller volume fractions up to about 10% and 20%, respectively. The second scheme is a hybrid method combining the virtues of the δγ scheme by Beenakker and Mazur with those of the PA scheme. It leads to predictions in good agreement with the simulation data, for all considered concentrations, combining thus precision with computational efficiency. The hybrid method is used to test the accuracy of a generalized Stokes-Einstein (GSE) relation proposed by Kholodenko and Douglas, showing its severe violation in low salinity systems. For hard spheres, however, this GSE relation applies decently well.  相似文献   

4.
In our recent work on concentrated suspensions of uniformly porous colloidal spheres with excluded volume interactions, a variety of short-time dynamic properties were calculated, except for the rotational self-diffusion coefficient. This missing quantity is included in the present paper. Using a precise hydrodynamic force multipole simulation method, the rotational self-diffusion coefficient is evaluated for concentrated suspensions of permeable particles. Results are presented for particle volume fractions up to 45% and for a wide range of permeability values. From the simulation results and earlier results for the first-order virial coefficient, we find that the rotational self-diffusion coefficient of permeable spheres can be scaled to the corresponding coefficient of impermeable particles of the same size. We also show that a similar scaling applies to the translational self-diffusion coefficient considered earlier. From the scaling relations, accurate analytic approximations for the rotational and translational self-diffusion coefficients in concentrated systems are obtained, useful to the experimental analysis of permeable-particle diffusion. The simulation results for rotational diffusion of permeable particles are used to show that a generalized Stokes-Einstein-Debye relation between rotational self-diffusion coefficient and high-frequency viscosity is not satisfied.  相似文献   

5.
Hydrodynamic and colloidal interactions are explored in concentrated, charge-stabilized colloidal dispersions by measuring the dependence of rheology (e.g., low and high-shear viscosity, high-frequency viscosity, and modulus) and self-diffusivity on salt content, particle size, and concentration. Model, sulfonated polystyrene lactices of varying diameter are prepared and investigated by shear rheology, high-frequency torsional resonance, electrophoresis, titration, and dynamic light scattering. The high-frequency and high-shear viscosity both are dominated by hydrodynamic interactions, but are shown not to be identical, due to the microstructure distortion resulting from high shear rates. The short-time self-diffusion is also shown to be insensitive to direct particle interactions, but has a different concentration dependence than the high-frequency viscosity, further illustrating a predicted violation of a generalized Stokes-Einstein relationship for these properties. The apparent colloidal surface charge is extracted from the high-frequency elastic modulus measurements on concentrated dispersions. The surface charge is in good agreement with results from critical coagulation concentration measurements and perturbation theories, but disagrees with electrophoretic mobility experiments. This indicates that the effective surface charge determined by torsional high-frequency measurements is a more reliable predicter of the salt stability of charge-stabilized dispersions, in comparison to zeta-potentials determined from electrophoretic mobilities. Further, we demonstrate by direct comparison that measurements of the apparent plateau modulus by rotational rheometry underestimate the true, high-frequency modulus and provide unreliable estimates for the surface charge. Copyright 2000 Academic Press.  相似文献   

6.
Short-time dynamic properties of concentrated suspensions of colloidal core-shell particles are studied using a precise force multipole method which accounts for many-particle hydrodynamic interactions. A core-shell particle is composed of a rigid, spherical dry core of radius a surrounded by a uniformly permeable shell of outer radius b and hydrodynamic penetration depth κ(-1). The solvent flow inside the permeable shell is described by the Brinkman-Debye-Bueche equation, and outside the particles by the Stokes equation. The particles are assumed to interact non-hydrodynamically by a hard-sphere no-overlap potential of radius b. Numerical results are presented for the high-frequency shear viscosity, η(∞), sedimentation coefficient, K, and the short-time translational and rotational self-diffusion coefficients, D(t) and D(r). The simulation results cover the full three-parametric fluid-phase space of the composite particle model, with the volume fraction extending up to 0.45, and the whole range of values for κb, and a/b. Many-particle hydrodynamic interaction effects on the transport properties are explored, and the hydrodynamic influence of the core in concentrated systems is discussed. Our simulation results show that for thin or hardly permeable shells, the core-shell systems can be approximated neither by no-shell nor by no-core models. However, one of our findings is that for κ(b - a) ? 5, the core is practically not sensed any more by the weakly penetrating fluid. This result is explained using an asymptotic analysis of the scattering coefficients entering into the multipole method of solving the Stokes equations. We show that in most cases, the influence of the core grows only weakly with increasing concentration.  相似文献   

7.
A new method to predict concentration dependence of collective diffusion coefficient of bovine serum albumin (BSA) in aqueous electrolyte solution is developed based on the generalized Stokes-Einstein equation which relates the diffusion coefficient to the osmotic pressure. The concentration dependence of osmotic pressure is evaluated using the solution of the mean spherical approximation for the two-Yukawa model fluid. The two empirical correlations of sedimentation coefficient are tested in this work. One is for a disordered suspension of hard spheres, and another is for an ordered suspension of hard spheres. The concentration dependence of the collective diffusion coefficient of BSA under different solution conditions, such as pH and ionic strength is predicted. From the comparison between the predicted and experimental values we found that the sedimentation coefficient for the disordered suspension of hard spheres is more suitable for the prediction of the collective diffusion coefficients of charged BSA in aqueous electrolyte solution. The theoretical predictions from the hard-core two-Yukawa model coupled with the sedimentation coefficient for a suspension of hard spheres are in good agreement with available experimental data, while the hard sphere model is unable to describe the behavior of diffusion due to its neglect of the double-layer repulsive charge-charge interaction between BSA molecules.  相似文献   

8.
The authors analyze the long-time self-diffusion of charge-stabilized colloidal macroions in nondilute suspensions using a mode-coupling scheme developed for multicomponent suspensions of interacting Brownian spheres. In this scheme, all ionic species, including counterions and electrolyte ions, are treated on an equal footing as charged hard spheres undergoing overdamped Brownian motion. Hydrodynamic interactions between all ions are accounted for on the far-field level. We show that the influence on the colloidal long-time self-diffusion coefficient arising from the relaxation of the microionic atmosphere surrounding the colloids, the so-called electrolyte friction effect, is usually insignificant in comparison with the friction contributions arising from direct and hydrodynamic interactions between the colloidal particles. This finding is true even for small colloid concentrations unless the mobility difference between colloidal particles and microions is not large. Furthermore, we observe an interesting nonmonotonic density dependence of the colloidal long-time self-diffusion coefficient in suspensions with low amount of added salt. We show that this unusual density dependence is due to colloid-colloid hydrodynamic interactions.  相似文献   

9.
10.
《Fluid Phase Equilibria》2006,239(1):91-99
Using our previously proposed matrix method, an equation of state for hard spheres is presented, which can reproduce the exact values of the first-eight virial coefficients. This equation meets both the low density and the close-packed limits and can predicts the first order fluid–solid phase transition of hard spheres. The results obtained show that the new equation of state can correlate the simulation data of compressibility factor up to high densities better than other equations of state.The new equation of state is extended to mixtures of hard spheres and excess functions of various binary liquid mixtures are calculated using the perturbation theory of Leonard–Henderson–Barker. The results are compared with existing theoretical and experimental data and with those calculated by other hard-sphere equations of state.It is seen that the results obtained by the new equation of state is quite satisfactory compared to other equations of state for the hard spheres and mixture of hard spheres.  相似文献   

11.
An equation of state for a multicomponent mixture of nonadditive hard spheres in d dimensions is proposed. It yields a rather simple density dependence and constitutes a natural extension of the equation of state for additive hard spheres proposed by us [A. Santos, S. B. Yuste, and M. Lopez de Haro, Mol. Phys. 96, 1 (1999)]. The proposal relies on the known exact second and third virial coefficients and requires as input the compressibility factor of the one-component system. A comparison is carried out both with another recent theoretical proposal based on a similar philosophy and with the available exact results and simulation data in d=1, 2, and 3. Good general agreement with the reported values of the virial coefficients and of the compressibility factor of binary mixtures is observed, especially for high asymmetries and/or positive nonadditivities.  相似文献   

12.
Translational tracer diffusion of spherical macromolecules in crowded suspensions of rodlike colloids is investigated. Experiments are done using several kinds of spherical tracers in fd-virus suspensions. A wide range of size ratios L/2a of the length L of the rods and the diameter 2a of the tracer sphere is covered by combining several experimental methods: fluorescence correlation spectroscopy for small tracer spheres, dynamic light scattering for intermediate sized spheres, and video microscopy for large spheres. Fluorescence correlation spectroscopy is shown to measure long-time diffusion only for relatively small tracer spheres. Scaling of diffusion coefficients with a/xi, predicted for static networks, is not found for our dynamical network of rods (with xi the mesh size of the network). Self-diffusion of tracer spheres in the dynamical network of freely suspended rods is thus fundamentally different as compared to cross-linked networks. A theory is developed for the rod-concentration dependence of the translational diffusion coefficient at low rod concentrations for freely suspended rods. The proposed theory is based on a variational solution of the appropriate Smoluchowski equation without hydrodynamic interactions. The theory can, in principle, be further developed to describe diffusion through dynamical networks at higher rod concentrations with the inclusion of hydrodynamic interactions. Quantitative agreement with the experiments is found for large tracer spheres, and qualitative agreement for smaller spheres. This is probably due to the increasing importance of hydrodynamic interactions as compared to direct interactions as the size of the tracer sphere decreases.  相似文献   

13.
The diffusion coefficients of nine fluorescently labeled antibodies, antibody fragments, and antibody complexes have been measured in solution very close to supported planar membranes by using total internal reflection with fluorescence correlation spectroscopy (TIR-FCS). The hydrodynamic radii (3-24 nm) of the nine antibody types were determined by comparing literature values with bulk diffusion coefficients measured by spot FCS. The diffusion coefficients very near membranes decreased significantly with molecular size, and the size dependence was greater than that predicted to occur in bulk solution. The observation that membrane surfaces slow the local diffusion coefficient of proteins in a size-dependent manner suggests that the primary effect is hydrodynamic as predicted for simple spheres diffusing close to planar walls. The TIR-FCS data are consistent with predictions derived from hydrodynamic theory. This work illustrates one factor that could contribute to previously observed nonideal ligand-receptor kinetics at model and natural cell membranes.  相似文献   

14.
MD simulation results for model size-symmetric and asymmetric electrolytes at high densities and temperatures (well outside the liquid-gas coexistence region) are generated and analyzed focusing on thermodynamic and diffusion properties. An extension of the mean spherical approximation for electrolytes originally derived for charged hard sphere fluids is adapted to these systems by exploiting the separation of short range and Coulomb interaction contributions intrinsic to these theoretical models and is found to perform well for predicting equation of state quantities. The diffusion coefficients of these electrolytes can also be reasonably well predicted using entropy scaling ideas suitably adapted to charged systems and mixtures. Thus, this approach may provide an avenue for studying dense electrolytes or complex molecular systems containing charged species at high pressures and temperatures.  相似文献   

15.
One of the major factors distinguishing molecular processes in vivo from biochemical experiments in vitro is the effect of the environment produced by macromolecular crowding in the cell. To achieve a realistic modeling of processes in the living cell based on biochemical data, it becomes necessary, therefore, to consider such effects. We describe a protocol based on Brownian dynamics simulation to characterize and quantify the effect of various forms of crowding on diffusion and bimolecular association in a simple model of interacting hard spheres. We show that by combining the elastic collision method for hard spheres and the mean field approach for hydrodynamic interaction (HI), our simulations capture the correct dynamics of a monodisperse system. The contributions from excluded volume effect and HI to the crowding effect are thus quantified. The dependence of the results on size distribution of each component in the system is illustrated, and the approach is applied as well to the crowding effect on electrostatic-driven association in both neutral and charged environments; values for effective diffusion constants and association rates are obtained for the specific conditions. The results from our simulation approach can be used to improve the modeling of cell signaling processes without additional computational burdens.  相似文献   

16.
A Monte Carlo method is developed for crossflow membrane filtration to determine the critical flux of hard sphere suspensions. Brownian and shear-induced diffusion are incorporated into an effective hydrodynamic force exerted on the hard spheres in a concentrated shear flow. Effects of shear rate and particle size on the critical flux are investigated using hydrodynamic force bias Monte Carlo simulations, providing a baseline of the critical flux.  相似文献   

17.
Brownian dynamics simulations are used to investigate the dynamics of orientational properties of real charge-stabilized ferrofluids, i.e. stable colloidal dispersions of magnetic nanoparticles. The relaxation times of the magnetization and of the birefringence, data accessible by experimental techniques, have been computed at several volume fractions. Besides, the effect of hydrodynamic interactions has been investigated. Equilibrium simulations without field are found to be inadequate to determine the aforementioned relaxation times for the systems under study, the dipolar interaction being too weak. Thus a nonequilibrium simulation procedure that mimics the experimental operating mode has been developed. After equilibrium simulations under a magnetic field, both birefringence and magnetization decays are recorded once the field is suppressed. Birefringence and magnetization decays are markedly impeded as the volume fraction increases, whereas they are barely enhanced when the intensity of the initial magnetic field is increased at a fixed volume fraction. Eventually, hydrodynamic interactions exhibit a slight but systematic lengthening of the relaxation times.  相似文献   

18.
The principles and techniques of dynamic light scattering (DLS) are outlined and its application to the study of suspensions of interacting colloidal particles is discussed. We show how, under appropriate conditions, DLS can measure long-time collective and self-diffusion coefficients as well as study short-time motions (characterized by the cumulants). These theoretical considerations are illustrated by experimental data. Finally, we discuss the relevance of certain characteristic timescales to theories of the diffusion of interacting particles.  相似文献   

19.
A study is presented of tracer diffusion in a rough hard sphere fluid. Unlike smooth hard spheres, collisions between rough hard spheres can exchange rotational and translational energy and momentum. It is expected that as tracer particles become larger, their diffusion constants will tend toward the Stokes-Einstein hydrodynamic result. It has already been shown that in this limit, smooth hard spheres adopt "slip" boundary conditions. The current results show that rough hard spheres adopt boundary conditions proportional to the degree of translational-rotational energy exchange. Spheres for which this exchange is the largest adopt "stick" boundary conditions while those with more intermediate exchange adopt values between the "slip" and "stick" limits. This dependence is found to be almost linear. As well, changes in the diffusion constants as a function of this exchange are examined and it is found that the dependence is stronger than that suggested by the low-density, Boltzmann result. Compared with smooth hard spheres, real molecules undergo inelastic collisions and have attractive wells. Rough hard spheres model the effect of inelasticity and show that even without the presence of attractive forces, the boundary conditions for large particles can deviate from "slip" and approach "stick."  相似文献   

20.
Summary: The specificity of interactions between pairs of molecules cannot be explicitly given by experimental transport coefficients such as intra‐ or mutual diffusion coefficients. But a microscopic interpretation of the transport properties exists, where distinct diffusion coefficients (DDCs) are related to preferential, correlated motion among distinct molecules. Since in general the DDCs do not play the role of an indicator for molecular self‐association phenomena if not compared with some appropriate standard, here we propose DDCs of hard spheres at the second order of volume fraction as new standard coefficients. The analysis based on these novel DDCs is designed to study intermolecular interaction between macromolecule and solvent. Comparisons of the novel non‐ideal with previous ideal reference states were done, and their combined use is shown to reinforce information conveyed by the usual velocity correlation analysis. The comparison of novel hard sphere standards with real DDCs, corresponding to an homologous chemical series of poly(ethylene glycol)‐water mixtures, provides a look at this polymer‐solvent mixture in a dilute and semi‐dilute regime.

Comparison between real (calculated by using Equation (5)–(7) and experimental data) and hard‐sphere based distinct diffusion coefficients for PEG 200 (1: Dequation/tex2gif-stack-1.gif; 2: Dequation/tex2gif-stack-2.gif and 3: Dequation/tex2gif-stack-3.gif).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号