首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Photoinduced charge separation and recombination in a carotenoid-porphyrin-fullerene triad C-P-C60 (Bahr et al., 2000) have been followed by time-resolved electron paramagnetic resonance. The electron-transfer process has been characterized in a glass of 2-methyltetrahydrofuran and in the nematic phase of two uniaxial liquid crystals (E-7 and ZLI-1167). In all the different media, the molecular triad undergoes two-step photoinduced electron transfer, with the generation of a long-lived charge-separated state (C*+-P-C60*-), and charge recombination to the triplet state, localized in the carotene moiety, mimicking different aspects of the photosynthetic electron-transfer process. The magnetic interaction parameters have been evaluated by simulation of the spin-polarized radical pair spectrum. The weak exchange interaction parameter (J = +1.7 +/- 0.1 G) provides a direct measure of the dominant electronic coupling matrix element V between the C*+-P-C60*- radical pair state and the recombination triplet state 3C-P-C60. Comparison of the estimated values of V for this triad and a structurally related triad differing only in the porphyrin bridge (octaalkylporphyrin vs tetraarylporphyrin) explains in terms of an electronic coupling effect the approximately 6-fold variation of the recombination rate induced by the modification of the porphyrin bridge as derived by kinetic experiments (Bahr et al., 2000).  相似文献   

2.
Tuning thermodynamic driving force and electronic coupling through structural modifications of a carotene (C) porphyrin (P) fullerene (C60) molecular triad has permitted control of five electron and energy transfer rate constants and two excited state lifetimes in order to prepare a high-energy charge-separated state by photoinduced electron transfer with a quantum yield of essentially unity (> or = 96%). Excitation of the porphyrin moiety of C-P-C60 is followed by a combination of photoinduced electron transfer to give C-P(.+)-C60.- and singlet-singlet energy transfer to yield C-P-1C60. The fullerene excited state accepts an electron from the porphyrin to also generate C-P(.+)-C60.-. Overall, this initial state is formed with a quantum yield of 0.97. Charge shift from the carotenoid to yield C(.+)-P-C60.- is at least 60 times faster than recombination of C-P(.+)-C60.-, leading to the overall quantum yield near unity for the final state. Formation of a similar charge-separate species from the zinc analog of the triad with a yield of 40% is also observed. Charge recombination of C(.+)-P-C60.- in 2-methyltetrahydrofuran yields the carotenoid triplet state, rather than the ground state. Comparison of the results for this triad with those for related triads with different structural features provides information concerning the effects of driving force and electronic coupling on each of the electron transfer steps.  相似文献   

3.
A perylenediimide chromophore (P) was incorporated into DNA hairpins as a base-pair surrogate to prevent the self-aggregation of P that is typical when it is used as the hairpin linker. The photoinduced charge-transfer and spin dynamics of these hairpins were studied using femtosecond transient absorption spectroscopy and time-resolved EPR spectroscopy (TREPR). P is a photooxidant that is sufficiently powerful to quantitatively inject holes into adjacent adenine (A) and guanine (G) nucleobases. The charge-transfer dynamics observed following hole injection from P into the A-tract of the DNA hairpins is consistent with formation of a polaron involving an estimated 3-4 A bases. Trapping of the (A 3-4) (+*) polaron by a G base at the opposite end of the A-tract from P is competitive with charge recombination of the polaron and P (-*) only at short P-G distances. In a hairpin having 3 A-T base pairs between P and G ( 4G), the radical ion pair that results from trapping of the hole by G is spin-correlated and displays TREPR spectra at 295 and 85 K that are consistent with its formation from (1*)P by the radical-pair intersystem crossing mechanism. Charge recombination is spin-selective and produces (3*)P, which at 85 K exhibits a spin-polarized TREPR spectrum that is diagnostic of its origin from the spin-correlated radical ion pair. Interestingly, in a hairpin having no G bases ( 0G), TREPR spectra at 85 K revealed a spin-correlated radical pair with a dipolar interaction identical to that of 4G, implying that the A-base in the fourth A-T base pair away from the P chromophore serves as a hole trap. Our data suggest that hole injection and transport in these hairpins is completely dominated by polaron generation and movement to a trap site rather than by superexchange. On the other hand, the barrier for charge injection from G (+*) back onto the A-T base pairs is strongly activated, so charge recombination from G (or even A trap sites at 85 K) most likely proceeds by a superexchange mechanism.  相似文献   

4.
Photoinduced electron transfer has been observed in a molecular triad, consisting of a porphyrin (P) covalently linked to a tetrathiafulvalene (TTF) and a fullerene derivative (C(60)), in the different phases of the liquid crystal E-7 and in a glass of 2-methyltetrahydrofuran (2-MeTHF) by means of time-resolved electron paramagnetic resonance (EPR) spectroscopy. In both solvents, an EPR signal observed immediately after excitation has been assigned to the radical pair TTF(*+)-P-C(60)(*-), based on its magnetic interaction parameters and spin polarization pattern. In the 2-MeTHF glass and the crystalline phase of E-7, the TTF(*+)-P-C(60)(*-) state is formed from the TTF-(1)P-C(60) singlet state via an initial TTF-P(*+)-C(60)(*-) charge-separated state. Long-lived charge separation ( approximately 8 mus) for the singlet-born radical pair is observed in the 2-MeTHF glass at cryogenic temperatures. In the nematic phase of E-7, a high degree of ordering in the liquid crystal is achieved by the molecular triad. In this phase, both singlet- and triplet-initiated electron transfer routes are concurrently active. At room temperature in the presence of the external magnetic field, the triplet-born radical pair (T)(TTF(*+)-P-C(60)(*-)) has a lifetime of approximately 7 mus, while that of the singlet-born radical pair (S)(TTF(*+)-P-C(60)(*-)) is much shorter (<1 mus). The difference in lifetimes is ascribed to spin dynamic effects in the magnetic field.  相似文献   

5.
We investigated by W-band (94 GHz) transient electron paramagnetic resonance (TREPR) and photoinduced absorption (PIA) spectroscopy two fullerene derivatives bearing a nitroxide radical unit. After pulsed laser photoexcitation of the molecules in liquid toluene solution, complex EPR spectra are recorded, with lines in absorption and emission. The intrinsic higher spectral and temporal resolution of the W-band frequency leads to the assignment of all the lines in the spectrum and the determination of the sign and the absolute value of the exchange coupling between the fullerene in its photoexcited triplet state (S(T) = 1) and the radical (S(R) = 1/2). The two compounds with different fullerene-nitroxide spacers show opposite-ferromagnetic and antiferromagnetic-exchange couplings. The time evolution of the spectra and the polarization of the lines are interpreted in terms of several possible spin polarization mechanisms. The EPR measurements are complemented with PIA experiments.  相似文献   

6.
Abstract— Photoionization of the amino acid tyrosine in basic water was studied by time-resolved electron paramagnetic resonance (TREPR) at X-band (9.5 GHz). Photoionization of deprotonated tyrosine leads to a spin-polarized emissive/absorptive chemically induced dynamic electron polarization (CIDEP) spectrum produced by the radical pair mechanism, with the tyrosyl radical in emission and the solvated electron in absorption, which implies a triplet precursor. The exchange interaction, J, is found to be negative for this radical pair. The triplet photoionization channel is determined to be monophotonic. The singlet channel of photoionization of deprotonated tyrosine is seen only upon addition of the electron acceptor 2-bro-mo-2-methylpropionic acid (BMPA) to the sample. The singlet channel is isolated by performing TREPR on a sample containing tyrosine, BMPA and a triplet quencher (2,4-hexadienoic acid). This channel is also found to be monophotonic.  相似文献   

7.
A dithienylethene (DTE)-porphyrin (P)-fullerene (C(60)) triad molecule in which intramolecular photoinduced electron transfer is controlled by the photochromic DTE moiety has been prepared. Irradiation of the molecule with visible light gives the open form of the dithienylethene (DTEo). Excitation of the porphyrin gives DTEo-(1)P-C(60), which undergoes photoinduced electron transfer with a time constant of 25 ps to generate DTEo-P(.+)-C(60)(.-). Irradiation with ultraviolet light produces the closed form of the dithienylethene (DTEc). Excitation of DTEc-P-C(60) yields DTEc-(1)P-C(60), whose porphyrin first excited singlet state is quenched in 2.3 ps by singlet-singlet energy transfer to DTEc, generating (1)DTEc-P-C(60) and precluding significant photoinduced electron transfer. Such highly reversible photonically controlled intramolecular photoinduced electron transfer may eventually be useful in the design of photonic or optoelectronic devices.  相似文献   

8.
The kinetics of intermediates generated from intramolecular electron-transfer reaction by photo irradiation of the flavin adenine dinucleotide (FAD) molecule was studied by a magnetic field effect (MFE) on transient absorption (TA) spectra. Existence time of MFE and MFE action spectra have a strong dependence on the pH of solutions. The MFE action spectra have indicated the existence of interconversion between the radical pair and the cation form of the triplet excited state of flavin part. All rate constants of the triplet and the radical pair were determined by analysis of the MFE action spectra and decay kinetics of TA. The obtained values for the interconversion indicate that the formation of cation radical promotes the back electron-transfer reaction to the triplet excited state. Further, rate constants of spin relaxation and recombination have been studied by the time profiles of MFE at various pH. The drastic change of those two factors has been obtained and can be explained by SOC (spin-orbit coupling) induced back electron-transfer promoted by the formation of a stacking conformation at pH > 2.5.  相似文献   

9.
A series of photoinduced H-atom abstraction reactions between anthraquinone-2,6,-disulfonate, disodium salt (AQDS) and differently charged micellar substrates is presented. After a 248 nm excimer laser flash, the first excited triplet state of AQDS is rapidly formed and then quenched by abstraction of a hydrogen atom from the alkyl chain of the micelle surfactant, leading to a spin-correlated radical pair (SCRP). The SCRP is detected 500 ns after the laser flash using time-resolved (direct detection) electron paramagnetic resonance (TREPR) spectroscopy at X-band (9.5 GHz). By changing the charge on the surfactant headgroup from negative (sodium dodecyl sulfate, SDS) to positive (dodecyltrimethylammonium chloride, DTAC), TREPR spectra with different degrees of antiphase structure (APS) in their line shape were observed. The first derivative-like APS line shape is the signature of an SCRP experiencing an electron spin exchange interaction between the radical centers, which was clearly observable in DTAC micelles and absent in SDS micellar solutions. Solutions with surfactant concentrations well below the critical micelle concentration (cmc) or solutions where micellar formation had been disrupted (1:1 v/v CH(3)CN/H(2)O) also showed no APS line shapes in their TREPR spectra. These results support the conclusion that electrostatic forces between the sensitizer (AQDS) charge and the substrate (surfactant) headgroup charge are responsible for the observed effects. The results represent a new example of electrostatic control of a spin exchange interaction in mobile radical pairs.  相似文献   

10.
A covalent, fixed-distance donor-bridge-acceptor (D-B-A) molecule was synthesized that upon photoexcitation undergoes ultrafast charge separation to yield a radical ion pair (RP) in which the spin-spin exchange interaction (2J) between the two radicals is sufficiently large to result in preferential RP intersystem crossing to the highest-energy RP eigenstate (T(+1)) at the 350 mT magnetic field characteristic of X-band (9.5 GHz) EPR spectroscopy. This behavior is unprecedented in covalent D-B-A molecules, and is evidenced by the time-resolved EPR (TREPR) spectrum at X-band of (3*)D-B-A derived from RP recombination, which shows all six canonical EPR transitions polarized in emission (e,e,e,e,e,e). In contrast, when the RP is photogenerated in a 3400 mT magnetic field, the TREPR triplet spectrum at W-band (94 GHz) of (3*)D-B-A displays the (a,e,e,a,a,e) polarization pattern characteristic of a weakly coupled RP precursor, similar to that observed in photosynthetic reaction center proteins, and indicates a switch to selective population of the lower-energy T(0) eigenstate.  相似文献   

11.
Magnetic field effect studies of alkylcobalamin photolysis provide evidence for the formation of a reactive radical pair that is born in the singlet spin state. The radical pair recombination process that is responsible for the magnetic field dependence of the continuous-wave (CW) quantum yield is limited to the diffusive radical pair. Although the geminate radical pair of adenosylcob(III)alamin also undergoes magnetic field dependent recombination (A. M. Chagovetz and C. B. Grissom, J. Am. Chem. Soc. 115, 12152–12157, 1993), this process does not account for the magnetic field dependence of the CW quantum yield that is only observed in viscous solvents. Glycerol and ethylene glycol increase the microviscosity of the solution and thereby increase the lifetime of the spin-correlated diffusive radical pair. This enables magnetic field dependent recombination among spin-correlated diffusive radical pairs in the solvent cage. Magnetic field dependent recombination is not observed in the presence of nonviscosigenic alcohols such as isopropanol, thereby indicating the importance of the increased microviscosity of the medium. Paramagnetic radical scavengers that trap alkyl radicals that escape the solvent cage do not diminish the magnetic field effect on the CW quantum yield, thereby ruling out radical pair recombination among randomly diffusing radical pairs, as well as excluding the involvement of solvent-derived radicals. Magnetic field dependent recombination among alkylcobalamin radical pairs has been simulated by a semiclassical model of radical pair dynamics and recombination. These calculations support the existence of a singlet radical pair precursor.  相似文献   

12.
Molecular oxygen's unique involvement in electron-transfer processes is demonstrated on a series of dyads between porphyrin derivatives and fullerene C60. It has been shown for the first time that oxygen can serve as an inhibitor of back electron transfer by enhancing intersystem crossing of a singlet radical ion pair into its triplet state. The effect is observed only when energy of the charge-separated state is lower than that of the locally excited triplet states. Due to the spin statistics, the reverse intersystem crossing is less efficient, allowing use of oxygen and other paramagnetic species for impeding charge recombination in various electron-transfer systems.  相似文献   

13.
Time-resolved magnetic resonance experiments (TREPR and CIDNP) are used to investigate previously unobserved redox chemistry of the surfactant dioctyl sulfosuccinate ester (AOT) using the photoexcited triplet state of anthraquinone 2,6-disulfonate (3AQDS*). Several different free radicals resulting from two independent oxidation pathways (electron transfer and hydrogen abstraction) are observed. These include the radical ions of AQDS and sulfite from electron-transfer processes, carbon-centered radicals from H-atom abstraction reactions, and an additional carbon-centered radical formed by electron transfer from the AOT sulfonate head group followed by the loss of SO3. The radicals exhibit intense chemically induced dynamic electron spin polarization (CIDEP) in their TREPR spectra. The intensity ratios of the observed TREPR signals for each radical depend on the water pool size and temperature, which in turn affect the predominant CIDEP mechanism. All signal carriers are accounted for by simulation, and CIDNP results provide strong supporting evidence for the assignments.  相似文献   

14.
Photoinduced electron-transfer processes between fullerene (C60) and 1,8-bis(dimethylamino)naphthalene, which is called a proton-sponge (PS), have been investigated by means of laser flash photolysis in the presence and absence of CF3CO2H. For a mixture of C60 and PS, the transient absorption spectra showed the rise of the C60 radical anion with concomitant decay of the C60 triplet (3C60), suggesting that photoinduced intermolecular electron transfer occurs via 3C60 in high efficiency in polar solvent. For a covalently bonded C60-PS dyad, photoinduced intramolecular charge-separation process takes place via the excited singlet state of the C60 moiety, although charge recombination occurs within 10 ns. For both systems, electron-transfer rates were largely decelerated by addition of a small amount of CF3CO2H, leaving the long-lived 3C60. These observations indicate that the energy levels for charge-separated states of the protonated PS and C60 become higher than the energy level of the 3C60 moiety, showing low donor ability of the protonated PS. Thus, intermolecular electron-transfer process via 3C60 for C60-PS mixture and intramolecular charge-separation process via 1C60-PS for C60-PS dyad were successfully controlled by the combination of the light irradiation with a small amount of acid.  相似文献   

15.
曾和平 《有机化学》2003,23(5):447-451
富勒烯(C60/C70)与N,N,N’,N’-四-(对甲苯基)-4,4’-二胺-1,1’-二 苯硒醚(TPDASe)间在激光光诱导条件下,发生了分子间的电子转移过程.在可见- 近红外区(600-1200nm),观测到了TPDASe阳离子自由基、富勒烯(C60/C70)激发三 线态和阴离子自由基,在苯腈溶液中,观测瞬态谱测定了电子从TPDASe转移到富勒 烯(C60/C70)激发三线态的量子转化产率(Φet^T)和电子转移常数(Ket).  相似文献   

16.
Photoexcitation of a series of donor-bridge-acceptor (D-B-A) systems, where D = phenothiazine (PTZ), B = p-phenylene (Phn), n = 1-5, and A= perylene-3,4:9,10-bis(dicarboximide) (PDI) results in rapid electron transfer to produce 1(PTZ+*-Phn-PDI-*). Time-resolved EPR (TREPR) studies of the photogenerated radical pairs (RPs) show that above 150 K, when n = 2-5, the radical pair-intersystem crossing mechanism (RP-ISC) produces spin-correlated radical ion pairs having electron spin polarization patterns indicating that the spin-spin exchange interaction in the radical ion pair is positive, 2J > 0, and is temperature dependent. This temperature dependence is most likely due to structural changes of the p-phenylene bridge. Charge recombination in the RPs generates PTZ-Phn-3*PDI, which exhibits a spin-polarized signal similar to that observed in photosynthetic reaction-center proteins and some biomimetic systems. At temperatures below 150 K and/or at shorter donor-acceptor distances, e.g., when n = 1, PTZ-Phn-3*PDI is also formed from a competitive spin-orbit-intersystem crossing (SO-ISC) mechanism that is a result of direct charge recombination: 1(PTZ+*-Phn-PDI-*) --> PTZ-Phn-3*PDI. This SO-ISC mechanism requires the initial RP intermediate and depends strongly on the orientation of the molecular orbitals involved in the charge recombination as well as the magnitude of 2J.  相似文献   

17.
Photonic control of photoinduced electron transfer has been demonstrated in a dimethyldihydropyrene (DHP) porphyrin (P) fullerene (C(60)) molecular triad. In the DHP-P-C(60) form of the triad, excitation of the porphyrin moiety is followed by photoinduced electron transfer to give a DHP-P(*)(+)-C(60)(*)(-) charge-separated state, which evolves by a charge shift reaction to DHP(*)(+)-P-C(60)(*)(-). This final state has a lifetime of 2 micros and is formed in an overall yield of 94%. Visible (>or=300 nm) irradiation of the triad leads to photoisomerization of the DHP moiety to the cyclophanediene (CPD). Excitation of the porphyrin moiety of CPD-P-C(60) produces a short-lived (<10 ns) CPD-P(*)(+)-C(60)(*)(-) state, but charge shift to the CPD moiety does not occur, due to the relatively high oxidation potential of the CPD group. Long-lived charge separation is not observed. Irradiation of CPD-P-C(60) with UV (254 nm) light converts the triad back to the DHP form. Thermal interconversion of the DHP and CPD forms is very slow, photochemical cycling is facile, and in the absence of oxygen, many cycles may be performed without substantial degradation. Thus, light is used to switch long-lived photoinduced charge separation on or off. The principles demonstrated by the triad may be useful for the design of molecule-based optoelectronic systems.  相似文献   

18.
The photophysical properties of axial-bonding types (terpyridoxy)aluminum(III) porphyrin (Al(PTP)), bis(terpyridoxy)tin(IV) porphyrin (Sn(PTP) 2), and bis(terpyridoxy)phosphorus(V) porphyrin ([P(PTP) 2] (+)) are reported. Compared with their hydroxy analogues, the fluorescence quantum yields and singlet-state lifetimes were found to be lower for Sn(PTP) 2 and [P(PTP) 2] (+), whereas no difference was observed for Al(PTP). At low temperature, all of the compounds show spin-polarized transient electron paramagnetic resonance (TREPR) spectra that are assigned to the lowest excited triplet state of the porphyrin populated by intersystem crossing. In contrast, at room temperature, a triplet radical-pair spectrum that decays to the porphyrin triplet state with a lifetime of 175 ns is observed for [P(PTP) 2] (+), whereas no spin-polarized TREPR spectrum is found for Sn(PTP) 2 and only the porphyrin triplet populated by intersystem crossing is seen for Al(PTP). These results clarify the role of the internal molecular structure and the reduction potential for electron transfer from the terpyridine ligand to the excited porphyrin. It is argued that the efficiency of this process is dependent on the oxidation state of the metal/metalloid present in the porphyrin and the reorganization energy of the solvent.  相似文献   

19.
Triazoline[4,5][60]fullerenes are strong electron acceptors that form with tetrathiafulvalene (TTF), a novel type of donor-acceptor dyad exhibiting efficient improved electron-transfer dynamics. In particular, a rapid photoinduced intramolecular electron transfer, forming a charge-separated state, is followed by a slow charge recombination to generate the fullerene triplet excited state in moderate quantum yields.  相似文献   

20.
Time-resolved (TR) EPR was used to study the photophysics and photochemistry of 1-(3-(methoxycarbonyl)propyl)-1-phenyl[6.6]C61 (M1). The CW TREPR spectra of M1 in the photoexcited triplet state, frozen in a rigid matrix and in liquid solution at room temperature, were compared with those of 3C60. The introduction of the substituent on C60 has a striking effect on the spectra of the triplets, which is attributed to the lifting of the orbital degeneracy by the reduction in symmetry. Fourier transform (FT) EPR was used in an investigation of electron-transfer reactions in liquid solutions mediated by 3M1. Of particular interest was the system of M1/chloranil (CA)/perylene (Pe). Photoexcitation of M1 is found to lead to the formation of the chloranil anion radical and the perylene cation radical. From the chemically induced dynamic electron polarization (CIDEP) patterns in the FTEPR spectra and the dependence of the reaction kinetics on reactant concentrations, it was deduced that CA- is formed by two competing pathways following photoexcitation of M1: (1) direct electron transfer from 3M1 to CA followed by electron transfer from Pe to M1+ and (2) energy transfer from 3M1 to Pe followed by oxidative quenching of 3Pe by CA. In both pathways, M1 acts as a light-energy harvester and mediator of electron-transfer reactions from Pe to CA without itself being consumed in the process, that is, as a photocatalyst. It is found that the functionalization of C60 makes its triplet state a worse electron donor and acceptor, but it has no significant effect on the triplet energy transfer reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号