首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The penetration of a magnetic flux into a type-II high-T c superconductor occupying the half-space x > 0 is considered. At the superconductor surface, the magnetic field amplitude increases in accordance with the law b(0, t) = b 0(1 + t)m (in dimensionless coordinates), where m > 0. The velocity of penetration of vortices is determined in the regime of thermally activated magnetic flux flow: v = v 0exp?ub;?(U 0/T )(1-b?b/?x)?ub;, where U 0 is the effective pinning energy and T is the thermal energy of excited vortex filaments (or their bundles). magnetic flux “Giant” creep (for which U 0/T? 1) is considered. The model Navier-Stokes equation is derived with nonlinear “viscosity” vU 0/T and convection velocity v f ∝ (1 ? U 0/T). It is shown that motion of vortices is of the diffusion type for j → 0 (j is the current density). For finite current densities 0 < j < j c, magnetic flux convection takes place, leading to an increase in the amplitude and depth of penetration of the magnetic field into the superconductor. It is shown that the solution to the model equation is finite at each instant (i.e., the magnetic flux penetrates to a finite depth). The penetration depth x eff A (t) ∝ (1 + t)(1 + m/2)/2 of the magnetic field in the superconductor and the velocity of the wavefront, which increases linearly in exponent m, exponentially in temperature T, and decreases upon an increase in the effective pinning barrier, are determined. A distinguishing feature of the solutions is their self-similarity; i.e., dissipative magnetic structures emerging in the case of giant creep are invariant to transformations b(x, t) = βm b(t/β, x(1 + m/2)/2), where β > 0.  相似文献   

2.
Avalanche flux penetration dynamics has been experimentally observed in a Josephson medium, a granular high-T c superconductor, with a slowly increasing external magnetic field. The observed voltage spikes are associated with the stepwise penetration of the field into the superconductor and obey a power-law size distribution. The results directly confirm the hypothesis of self-organized criticality in such a system.  相似文献   

3.
High-frequency losses in the strongly anisotropic layered superconductor Bi2Sr2CaCu2O8 are measured at 600 MHz under a magnetic field rocking about the ab plane. Anomalies in losses and hysteretic phenomena are found while performing periodic rocking, i.e., cycling the magnetic field component normal to the sample surface. Based on these observations, conclusions are drawn about the nature of magnetic-flux penetration into the superconductor. It is found that, in the range between 60 K and T c , the dynamics of magnetic-flux vortex lines normal to the ab plane in the presence of a constant magnetic field applied parallel to this plane is governed by the critical penetration field H c ⊥* and the surface barrier in the presence of thermally activated vortex motion (giant flux creep). The dependences of H c1 ⊥* and the characteristic field of the surface barrier on the magnitude of the parallel magnetic field are measured.  相似文献   

4.
Temperature dependences of the resistivity ρ(T) of samples of granular high-temperature superconductor YBa2Cu3O7 – δ are measured at various transverse external magnetic fields at 0 < H ext < 1900 Оe in the temperature range from the upper Josephson critical temperature of “weak bonds” T c2J to temperatures slightly exceeding the superconducting transition temperature T c . Based on the data obtained, the behavior of the field dependences of the critical temperatures of superconducting grains and “weak bonds,” and temperature and field dependences of the magnetic contribution to the resistivity \(\left[ {\Delta \rho \left( {T,H} \right) = \rho {{\left( T \right)}_{{H_{ext}} = const}} - \rho {{\left( T \right)}_{{H_{ext}} = 0}}} \right]\). It is shown that the behavior of the magnetic contribution to the resistivity Δρ along the line of the phase transition related to the onset of the magnetic field penetration in the form of Abrikosov vortices into the subsystem of superconducting grains T c1g (H ext) is anomalous. The concepts on the magnetic flux redistribution between both subsystems of two-level HTSC near in the vicinity of T c1g : the Josephson vortex decreases, and the Abrikosov vortex density increases.  相似文献   

5.
Experimental investigation of the thermal conductivity of large grain and its dependence on the trapped vortices in parallel magnetic field with respect to the temperature gradient \(\nabla T\) was carried out on four large-grain niobium samples from four different ingots. The zero-field thermal conductivity measurements are in good agreement with the measurements based on the theory of Bardeen–Rickayzen–Tewordt (BRT). The change in thermal conductivity with trapped vortices is analysed with the field dependence of the conductivity results of Vinen et al for low inductions and low-temperature situation. Finally, the dependence of thermal conductivity on the applied magnetic field in the vicinity of the upper critical field H c2 is fitted with the theory of pure type-II superconductor of Houghton and Maki. Initial remnant magnetization in the sample shows a departure from the Houghton–Maki curve whereas the sample with zero trapped flux qualitatively agrees with the theory. A qualitative discussion is presented explaining the reason for such deviation from the theory. It has also been observed that if the sample with the trapped vortices is cycled through T c, the subsequent measurement of the thermal conductivity coincides with the zero trapped flux results.  相似文献   

6.
We studied the commensurate semifluxon oscillations of Josephson flux-flow in Bi-2212 stacked structures near Tc as a probe of melting of a Josephson vortex lattice. We found that oscillations exist above 0.5 T. The amplitude of the oscillations is found to decrease gradually with the temperature and to turn to zero without any jump at T = T0 (3.5 K below the resistive transition temperature Tc), thus, indicating a phase transition of the second order. This characteristic temperature T0 is identified as the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature, TBKT, in the elementary superconducting layers of Bi-2212 at zero magnetic field. On the basis of these facts, we infer that melting of a triangular Josephson vortex lattice occurs via the BKT phase with formation of characteristic flux loops containing pancake vortices and antivortices. The B-T phase diagram of the BKT phase found from our experiment is consistent with theoretical predictions.  相似文献   

7.
Calculations of critical temperature T c of the phase transition to superconducting state of a superconductor/ ferromagnet/superconductor (SFS) hybrid structure with proximity effect is performed on the base of linearized Usadel equations. It is shown that the proximity effect between S and F metals and the exchange interaction can induce an inhomogeneous superconducting state with longitudinal to layers Δ exp(ipz) modulation of the superconductivity order parameter, which is characterized by nonzero value of the wave number p, describing the Larkin–Ovchinnikov–Fulde–Ferrell instability. Influence of this instability on transitions between 0- and π-states of the SFS structure is studied. It is shown that the 0–π transition is accompanied by a nonmonotonic dependence of both the critical temperature T c and the effective penetration depth Λ of the magnetic field into the hybrid structure on the characteristic size of the ferromagnetic region.  相似文献   

8.
The problem of magnetic field penetration into the half-space is considered in parallel geometry in an external magnetic field increasing with time in accordance with the law B(0, t, τ0 = B c 1 (1 + t0) m , m ≥ 0, t ≥ 0 (τ 0 is the time of magnetic flux redistribution and B c 1 is the lower critical field). It is assumed that the flow of vortices is thermally activated in the “giant” creep mode (i.e., for weak pinning creep and high temperatures). A model equation is derived for describing the magnetic flux evolution. Analytic formulas are obtained for the depth and velocity of magnetic field penetration. It is shown that the giant creep regime is stable for 0 ≤ m ≤ 1/2.  相似文献   

9.
The penetration of a magnetic field into superconducting grains and weak links of YBa2Cu3O7?δ ceramic high-temperature superconductors is investigated using measurements of the transverse and longitudinal magnetoresistances at T=77.3 K and 0≤H≤~500 Oe as a function of the transport current in the range ~0.01≤I/I c ≤~0.99. The effects associated with the complete penetration of Josephson vortices into weak links of the high-temperature superconductor in magnetic fields Hc2J, the onset of penetration of Abrikosov vortices into superconducting grains in magnetic fields Hc1A, and the first-order transition from the Bragg glass phase to the vortex glass phase in fields HBG-VG are revealed and interpreted. The I-H phase diagrams YBa2Cu3O7?δ high-temperature superconductors are constructed for IH and IH.  相似文献   

10.
The instability of a magnetic flux flow in a system of vortices and antivortices in superconductors with a power (exponent m) anisotropic current-voltage characteristic was studied theoretically. It was shown that instability arose even at a comparatively weak anisotropy of the current-carrying properties of a superconductor if m?1. The dispersion equation determining the dependence of the increment of instability growth on the wave number was derived and analyzed.  相似文献   

11.
A change in the effect of a frozen magnetic field parallel to the c-axis on rf power absorption, which is associated with the motion of Josephson vortices, is observed in the layered superconductor Bi2Sr2CaCu2O8 at a low temperature (~15 K). The effect is interpreted as a change in the interaction between an Abrikosov vortex and a Josephson vortex from attraction (at high temperatures) to repulsion (at low temperatures). It is found that the dynamics of the magnetic flux parallel to the ab plane of the single crystal becomes irreversible upon a transition of the superconductor to the layered state. Possible reasons behind the observed effect are considered, one of them being a manifestation of the second superconducting transition in the elementary-excitation spectrum of a d-type superconductor near the core of Abrikosov vortices.  相似文献   

12.
An expression for the permittivity tensor of a superconductor is derived within the framework of a two-fluid model of the electron subsystem. For the temperature range T ? T c , the dispersion relations for surface polaritons that propagate in the direction of the three principal crystallographic axes of a thin superconducting layer along its two interfaces with isotropic dielectrics are found. A significant effect of the superconductor anisotropy on the dispersion relations is revealed. The polarization structure of the wave field inside and outside the superconducting layer is determined.  相似文献   

13.
The anisotropy in the superconducting properties of single-crystal Nd1.85Ce0.15CuO4 was studied from measurements of the heat capacity within the temperature interval 2–40 K in zero magnetic field and in a magnetic field of 8 T. We report on the first observation of heat capacity jumps occurring at the superconducting transition for various magnetic field orientations with respect to the crystallographic axes and on a strong anisotropy of the magnetic contribution to heat capacity in magnetic fields oriented in the a-b plane and perpendicular to it. These measurements yielded the anisotropy in the electronic heat capacity coefficient γn(H) and in the superconducting transition temperature Tc(H). The angular dependence of the Sommerfeld coefficient γn in the a-b plane observed in a magnetic field of 8 T exhibits four-lobe symmetry and zero gap direction of the order parameter. A comparison of the results obtained on the Nd1.85Ce0.15CuO4 single crystal with the data available for La1.85Sr0.15CuO4 permits one to conclude that the mechanisms of superconductivity in the electron-and hole-doped superconductors are similar.  相似文献   

14.
The transition from a homogeneous into a modulated magnetic state in the easy-plane weak ferromagnet FeBO3: Mg is studied by a magnetooptic method. At T < 135 K, the application of a magnetic field in the basal plane of the crystal is shown to excite the modulation of its magnetic order parameter, which manifests itself in a periodic deviation of the local ferromagnetism vector from the magnetization direction. The conditions for the existence of a modulated magnetic superstructure in FeBO3: Mg are studied, and its preferred orientation in the basal plane of the crystal is analyzed. A magnetic H-T phase diagram that shows the boundaries between the homogeneous and inhomogeneous magnetic states of this weak ferromagnet is constructed. The modulation period and the azimuthal angle specifying the local ferromagnetism vector direction in the structure are studied as a function of temperature and magnetic field. The results obtained are discussed in terms of the theory of magnetic ripple using the model of anisotropic magnetic centers appearing in a crystal doped by magnesium ions.  相似文献   

15.
Superconducting phase transition temperature T c of a ferromagnet/superconductor (SF) hybrid structure consisting of a hollow superconducting (S) cylinder (shell) with the central part (core) filled with a ferromagnetic (F) metal has been analyzed on the basis of linearized Usadel equations. It has been shown that the proximity effect between the S and F metals, as well as the exchange interaction, may induce an inhomogeneous superconducting state with Δ ~ exp(iLθ + ipz), which is characterized by nonzero circulation of phase L and wavenumber p describing the Larkin–Ovchinnikov–Fulde–Ferrell (LOFF) instability along the cylinder axis. The transitions between the states with different values of L and p, which are accompanied by a nonmonotonic dependence of superconducting transition temperature T c and effective magnetic field penetration depth Λ into the SF structure on the characteristic size of the ferromagnetic region, have been investigated.  相似文献   

16.
The effect of a high electric field on the c-axis fluctuation conductivity in layered superconductors near the superconducting transition is investigated by the time-dependent Ginzburg-Landau equation. The c-axis fluctuation conductivity is calculated in self-consistent Gaussian approximation for an arbitrarily strong electric field and a magnetic field perpendicular to the layers. Our results include all Landau levels and have refined analytical form. The results in linear response are in good agreement with the experimental data in a wide region around T c in high T c superconductor. We also show that high electric fields can be effectively used to suppress the c-axis fluctuation conductivity in high-temperature superconductors.  相似文献   

17.
《Physics letters. A》2006,360(1):183-189
Based on the ϕ-mapping theory, we derive a new rigorous equation describing the distribution of the magnetic field for vortices in a two-gap superconductor, of which the so-called modified London equation is just a special case in a one-flavor limit. We explicitly investigate the London penetration depth, the Meissner and mixed states and Josephson effect. A magnetic flux quantization condition for vortices in a two-gap superconductor is also derived, from which it follows that in a two-gap superconductor there exist vortices which carry an arbitrary fraction of magnetic flux quantum. The branch processes during the evolution of the vortices in a two-gap superconductor are discussed.  相似文献   

18.
Abstract

The phenomenological theory of superconductors with a many-component order parameter (OP) is developed. On the basis of a generalized Ginzburg-Landau functional, equations for a two-component-OP superconductor are derived. It is shown that such a superconductor is specified by three length dimensionality parameters—penetration depth λ, correlation length ζ, and width d of the boundary between two superconducting-phase domains. With λ ? d ? ζ, the equations for the OP of a superconductor in a magnetic field can be explored analytically. The transition from the superconducting to the mixed phase may occur not only by the formation of ordinary Abrikosov vortices, but also owing to vortices that have two cores, each transferring a half-integral flux quantum. The total flux transferred by a vortex certainly constitutes an integral quantum. The cores of such a dimer are interconnected by two domain walls, which exercise confinement within the dimer. The distance between the cores in the dimer is of the order of d. Within a domain wall that separates two superconducting-phase domains, a dimer may fall apart into two vortices with a half-integral flux quantum.

For many-component-OP superconductors in a magnetic field, vortex structures of a more complicated nature than a dimer may occur. An individual core may transfer a fractional flux quantum, but the structure as a whole transfers an integral flux quantum. Confinement of individual cores occurs owing to a complicated system of domain walls determined by the topological charges of these vortices.

Under certain conditions, on attaining field H c1, vortices may arise first in the domain walls, carrying a fractional flux quantum, and then within the superconducting domains.  相似文献   

19.
The rotation of the radiation polarization plane in a longitudinal magnetic field (Faraday effect) on the D1 line in atomic Rb vapor has been studied with the use of a nanocell with the thickness L varying in the range of 100–900 nm. It has been shown that an important parameter is the ratio L/λ, where λ = 795 nm is the wavelength of laser radiation resonant with the D1 line. The best parameters of the signal of rotation of the radiation polarization plane have been obtained at the thickness L = λ/2 = 397.5 nm. The fabricated nanocell had a large region with such a thickness. The spectral width of the signal reached at the thickness L = 397.5 nm is approximately 30 MHz, which is much smaller than the spectral width (≈ 500 MHz) reached with ordinary cells with a thickness in the range of 1–100 mm. The parameters of the Faraday rotation signal have been studied as functions of the temperature of the nanocell, the laser power, and the magnetic field strength. The signal has been reliably detected at the laser power PL ≥ 1 μW, magnetic field strength B ≥ 0.5 G, and the temperature of the nanocell T ≥ 100°C. It has been shown that the maximum rotation angle of the polarization plane in the longitudinal magnetic field is reached on the Fg = 3 → Fe = 2 transition of the 85Rb atom. The spectral profile of the Faraday rotation signal has a specific shape with a sharp peak, which promotes its applications. In particular, Rb atomic transitions in high magnetic fields about 1000 G are split into a large number of components, which are completely spectrally resolved and allow the study of the behavior of an individual transition.  相似文献   

20.
The dependences of the resistance of the layered quasi-one-dimensional semiconductor TiS3 on the direction and magnitude of the magnetic field B have been measured. The anisotropy and angular dependences of the magnetoresistance indicate the two-dimensional character of the conductivity at T < 100 K. Below T0 ≈ 50 K, the magnetoresistance for the directions of the field in the plane of the layers (ab plane) increases sharply, whereas the transverse magnetoresistance (Bc) becomes negative. The results confirm the possibility of an electron phase transition to a collective state at T0. The negative magnetoresistance (at Bc) below T0 is explained by the magnetic-field-induced suppression of two-dimensional weak localization. The positive magnetoresistance (at Bab) is explained by the effect of the magnetic field on the spectrum of electronic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号