首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M. Attalla 《实验传热》2015,28(2):139-155
The heat transfer characteristics in a stagnation region were investigated experimentally for five circular free jets impinging into a heated flat plate. The local temperature distributions are estimated from the thermal images obtained from an infrared camera. To get a precise heat transfer data over the plate, fully developed straight pipe jets were used in this study. Mean jet Reynolds number varied from 1,000 to 45,000, jet-to-plate vertical non-dimensional distance H/D varied from 2 to 6, and the spacing distance jet-to-jet S/D varied from 2 to 8. A geometrical arrangement of one jet surrounded by four jets an in-line array was tested. The results show that the stagnation point Nusselt number is correlated to a jet Reynolds number as Nust∝Re0.61. The average Nusselt number is higher at a separation distance of 2D for three cases of spacing distances, S/D = 2, 4, and 6.  相似文献   

2.
An experimental study was performed to investigate the influence of Reynolds number (Re) and non-dimensional jet-to-jet spacing (S/Dh) on flame shape, structure and temperature field of an array of laminar premixed slot flame jets. Mach-Zehnder interferometry technique is used to obtain an insight to the overall temperature field between single, twin and triple slot flame jets. The slot jets with large aspect ratio (L/W), length of L=60 mm and width of W=6 mm were used to eliminate the three-dimensional effect of temperature field. The effect of jet-to-jet spacing was investigated on flame characteristics under the test conditions of 200≤Re≤400 and equivalence ratio (φ) of unity. The present measurement reveals that the variation of maximum flame temperature with increment of Reynolds number is mainly due to heat transfer effects and is negligible while the flame height is increased. For the cases of twin and triple flame jets by increasing Reynolds number and decreasing non-dimensional jet-to-jet spacing (S/Dh), the interferences between the jets are increased and the jets attracted each other. Strong interference was observed at S/Dh=1.15. For the case of triple jets at this S/Dh, the central jet was suppressed while the side jets deflected towards the inner jet. The interference between jets was found to reduce the heat flux in the jet-to-jet interacting zone due to incomplete combustion. Also the optimum jet-to-jet spacing of triple flame jets is obtained at each Reynolds number to enhance the heat transfer performance of the jets.  相似文献   

3.
An experimental investigation was conducted on automatic transmission fluid cooling in a minichannel heat exchanger using a closed-loop integrated thermal wind tunnel test facility. Effects of automatic transmission fluid Reynolds number (ReL) on heat transfer coefficient and Nusselt number were examined within the ReL of 3–30 for air-flow Re of 1,450–5,200. Effects of serpentine on heat transfer enhancement and flow characteristics were evaluated through Dean number analysis. The analysis of Eckert number and Brinkman number showed a contribution to the viscous heating even for a low ReL in the minichannel. The study showed enhanced heat transfer characterizations of the multi-port minichannel heat exchanger.  相似文献   

4.
杜诚  徐敏义  米建春 《物理学报》2010,59(9):6331-6338
本文研究雷诺数(Re)对圆形渐缩喷嘴湍流射流的影响.实验在射流出口雷诺数为 Re = 4050—20100 的范围内进行,分别测量了射流出口、中心线的平均及湍流流场以及部分径向剖面速度分布.所有测量均采用单热线恒温热线风速仪进行高频采样,所测流场范围在轴向上为 0—30d(这里d为射流出口直径).虽然出口速度分布均为"平顶帽"形,但测量结果依然反映出Re对射流出口以及下游流场有强烈的影响.当Re小于临界值(~10000)时 关键词: 雷诺数 圆形射流 热线风速仪  相似文献   

5.
C. Onan  D.B. Ozkan 《实验传热》2013,26(2):244-265
The heat and mass transfer from a grooved tube is investigated experimentally for a falling-film flow. The experiments are conducted on a helical trapezoidal grooved tube at three temperatures of the feeding water: 30°C, 35°C, and 40°C. The Reynolds number (Re) of the air ranges between 1,500 and 3,500. Nusselt number (Nu) is expressed as a function of the Prandtl number (Pr), Re for air (Rea), Re for water (Rew); Sherwood number (Sh) is expressed as a function of the Schmidt number (Sc), Rea, and Rew, and the correlation coefficients are determined.  相似文献   

6.
米建春  杜诚 《中国物理 B》2011,20(12):124701-124701
This paper assesses the suitability of the inflow Reynolds number defined by ReoUoD/ν (here Uo and D are respectively the initial jet velocity and diameter while ν is kinematic viscosity) for a round air/air jet. Specifically an experimental investigation is performed for the influences of Uo, D and Reo on the mean-velocity decay and spread coefficients (Ku, Kr) in the far field of a circular air jet into air from a smoothly contracting nozzle. Present measurements agree well with those previously obtained under similar inflow conditions. The relations KuUo and Kr ∝ 1/Uo for Uo < 5 m/s appear to work, while each coefficient approaches asymptotically to a constant for Uo > 6 m/s, regardless of the magnitudes of Reo and D. It is revealed that Reo may not be an appropriate dimensionless parameter to characterize the entire flow of a free air/air jet. This paper is the first paper that has challenged the suitability of Reo for turbulent free jets.  相似文献   

7.
The water/graphene oxide nanofluid effect in a pipe equipped by twisted tape inserts under air cross-flow is investigated and the optimal tape geometry is determined. The range of internal and external Reynolds numbers are: 3800<Reo<21500 and 550<Rei<2000. Heat transfer and pressure drop increase by increasing Re and inserts width and heat transfer performance coefficient increased up to 1.4, indicating enhanced heat transfer compared to undesirable pressure drop. On the other hand, the heat transfer coefficient is 26% higher when compared with water in a plain tube. According to the results, this method is a good alternative in heat exchangers.  相似文献   

8.
徐敏义  杜诚  米建春 《物理学报》2011,60(3):34701-034701
本文采用热线风速仪测量了出口雷诺数为Re (≡ Ujd/ν) = 20100的圆形射流的中心线轴向速度,其中Uj为动量平均出口速度,d为喷嘴出口直径,ν为运动黏性系数.在有效去除热线测量数据中的高频噪声后,作者对射流中心线上小尺度湍流统计量的变化规律进行了系统的分析.研究发现,射流在经过一定距离的发展后,其小尺度统计量逐渐进入自相似状态,湍动能平均耗散率ε随下游距离的增加以指数形 关键词: 恒温热线 圆形湍射流 耗散率 小尺度  相似文献   

9.
Conditional averaging techniques were used to examine the periodic motions that were observed in flows consisting of an offset planar jet and a co-flowing planar wall jet. The offset jet is one jet height (Hj) away from the wall and has a Reynolds number of approximately 40, 000, based on Hj and flow-rate averaged velocity Uo; for the co-flowing jets, different heights (i.e., 0.18Hj and 0.5Hj) and velocities (i.e., 0.56Uo and 0.36Uo) were considered. The flows had periodic motions with frequencies fHj/Uo = 0.28 and 0.49 or fHc/Uo = 0.23 and 0.25, where Hc is the distance between the jets. The periodic motions were present in both the inner shear layer of the offset jet above the re-circulation region and the outer shear layer of the wall jet below the re-circulation region. The motions from the inner shear layer of the offset jet persisted in the shear layer that formed downstream of the re-circulating region. There were periodic motions in the outer shear layer of the offset jet particularly in the flow with the smaller wall jet. The relative contribution of the motions to the total fluctuations increased as the flow evolved downstream reaching a maximum approximately 4Hc downstream of the flow exit. The relative contribution of the periodic motions to the turbulent fluctuations was similar in the two flows but the periodic motions had a much larger impact on the near-wall velocity and pressure fluctuations in the flow with the smaller wall jet due to the trajectory of the periodic structures, the distance of the periodic structures to the wall and the size of these structures.  相似文献   

10.
G. Li  Y. Zheng  G. Hu  Z. Zhang 《实验传热》2013,26(2):198-211
Experiments have been carried out to study heat transfer enhancement from a heated rectangular flat plate in pulsating flows. A heat transfer empirical formula of the heated rectangular flat plate in pulsating flows was developed that correlates the heat transfer enhancement factor to the Womersley number (α = 3.3–23.8), the Reynolds number (Re = 527–4,217), and the pressure coefficient (C p  = 41.3–31,644.6). The results demonstrate that heat transfer from the rectangular flat plate was enhanced significantly under proper conditions. In addition, the influence of the Reynolds number on the heat transfer enhancement factor increases as the pressure amplitude increases.  相似文献   

11.
The gasdynamic parameters of nonsteady expansion of He, Ar, N2, and SiH4 from a sonic nozzle into a space with reduced background gas pressure were experimentally studied for moderate values of n (103–106) and the Reynolds number (ReL∼100–102). The jet set times necessary for the formation of pulsed jets of a given finite duration are determined. The results are generalized in terms of dimensionless similarity parameters. The laws of motion of the leading and trailing fronts in pulsed jets of various gases are established. The leading front of a pulsed jet propagates at a velocity significantly smaller than the limiting steady value. The jet expansion dynamics is determined by the ratio of the momentum of the expanding gas to that of the background gas displaced from the flow region. The length of the steady flow region in a pulsed jet monotonically decreases downstream from the source and drops with increasing background gas pressure because of the loss of jet particles in the trailing rarefaction wave; this length increases with the initial momentum because the background gas is more intensively displaced from the flow region.  相似文献   

12.
An experimental study on mixing enhancement in free jets, issuing from sharp-edged nozzles of different geometry, is performed by using particle image velocimetry. The attention is focused on the jet near-field and interaction zones (0 < X/D < 18, where X is the axial coordinate and D the diameter of the equivalent circular jet). The mixing efficiency is evaluated and quantified using the definition of entropy production derived from the velocity field. The effect of Reynolds number is also discussed by performing measurements at Re = 8000 and Re = 35,000. The results are compared to circular nozzle data to evaluate the change in mixing efficiency among axisymmetric and non-symmetric nozzles. While the effect of Reynolds number on mixing is small, at least for the values tested here, the change in geometry is rather crucial. In terms of entropy production, the rectangular and elliptical nozzles show higher mixing for X/D< 7, whereas the other ones attain the best results for larger distances. This behaviour is basically related to the axis-switching phenomenon observed in elongated jets. Different variables are tested and compared as possible velocity and length scales to derive a meaningful non-dimensional entropy production.  相似文献   

13.
An experimental investigation of noise generation by instabilities in low Reynolds number supersonic air jets has been performed. Sound pressure levels, spectra and acoustic phase fronts were measured with a traversing condenser microphone in the acoustic field of axisymmetric, perfectly expanded, cold jets of Mach numbers 1·4, 2·1 and 2·5. Low Reynolds numbers in the range from Re = 3700 to Re = 8700 were obtained by exhausting the jets into an anechoic vacuum chamber test facility. This contrasts with Reynolds numbers of over 106 for similar jets exhausting into atmospheric pressure. The flow fluctuations of the instability in all three jets have been measured with a hot-wire and the results are documented in a previous paper by Morrison and McLaughlin. Acoustic measurements show that the major portion of the sound radiated by all three jets is produced by the instability's rapid growth and decay that occurs near the end of the potential core. This takes place over a relatively short distance (less than two wavelengths of the instability) in the jet. In the lower two Mach number jets the instability has a phase velocity less than the ambient acoustic velocity. In the Mach number 2·5 jet the instability phase speed is 1·11 times the ambient acoustic velocity. In this case the acoustic phase fronts indicate the possibility of a Mach wave component. It was also determined that low level excitation at the dominant frequency of the instability actually decreased the radiated noise by suppressing the broad band component.  相似文献   

14.

Experiments on triangular and rectangular array jet impingement and single-phase spray cooling have been performed to determine the effect of both cooling techniques on heat transfer coefficient (h) and the coolant mass flux required for a given cooling load. Experiments were performed with circular orifices and nozzles for different H/D values from 1.5 to 26 and Reynolds number range of 219 to 837, which is quite lower than the ranges employed in widely used correlations. The coolant used was polyalphaolefin. The experiments simulated the boundary condition produced at the surface of the stator of a high power low-density generator or motor. For the custom fabricated orifices, commercial nozzles, and conditions used in this study, both cooling configurations showed enhancement of heat transfer coefficient as H/D increases to a certain limit after which it starts to decrease. The heat transfer coefficient always increases with Reynolds number. In keeping with previous studies, single-phase spray cooling technique can provide the same heat transfer coefficient as jets at a slightly lower mass flux, but with much higher-pressure head. Special Nud correlations that account for the range of parameters and coolant studied in this work are derived.  相似文献   

15.
A rich data-set of Lagrangian trajectories from 3D particle tracking velocimetry is used to study the structure of various acceleration components, vorticity, and strain in the intermediate field of a circular jet at Reynolds number Re = 6000. The total acceleration is decomposed into three distinctive sets: (1) streamwise–radial; (2) tangential–normal; and (3) local–convective components. Probability density function (PDF) and joint distributions of each set are characterised at various radial locations from the jet core within a streamwise band 16 ≤ x/dh ≤ 17, where dh is the diameter of the pipe. The PDF of the relative angle between the acceleration components and the velocity vector is also included to aid the characterisation. Results show that the acceleration components are described by two distinctive distributions: one of them exhibits symmetry and heavy tails, while the other is best fitted by a power-law type. The tails of acceleration PDFs are heavier with larger radial distance from the core. The increased departure from the Gaussian distribution with the distance from the core is a result of the increasing turbulence levels promoted by the mean shear. The variation of the third and fourth moments between the streamwise–tangential and the radial–normal accelerations indicate the anisotropy of the jet. Joint PDF of each acceleration decomposition exhibits distinctive distribution that appears to depend from the distance from the jet core. However, the vorticity and strain show similar PDF across radial distances. Finally, complementary analysis of a jet from a semicircular pipe shows the footprint of the nozzle geometry in the acceleration structure of jets.  相似文献   

16.
We study the scaling properties of heat transfer Nu in turbulent thermal convection at large Prandtl number Pr using a quasi-linear theory. We show that two regimes arise, depending on the Reynolds number Re. At low Reynolds number, NuPr -1/2 and Re are a function of RaPr -3/2. At large Reynolds number NuPr 1/3 and RePr are function only of RaPr 2/3 (within logarithmic corrections). In practice, since Nu is always close to Ra 1/3, this corresponds to a much weaker dependence of the heat transfer in the Prandtl number at low Reynolds number than at large Reynolds number. This difference may solve an existing controversy between measurements in SF6 (large Re) and in alcohol/water (lower Re). We link these regimes with a possible global bifurcation in the turbulent mean flow. We further show how a scaling theory could be used to describe these two regimes through a single universal function. This function presents a bimodal character for intermediate range of Reynolds number. We explain this bimodality in term of two dissipation regimes, one in which fluctuation dominate, and one in which mean flow dominates. Altogether, our results provide a six parameters fit of the curve Nu(Ra, Pr) which may be used to describe all measurements at Pr≥0.7. Received 27 February 2002 / Received in final form 29 May 2002 Published online 31 July 2002  相似文献   

17.
Abstract

The effect of streamwise jet-to-jet spacing on local heat transfer distribution due to an in-line rectangular array of confined multiple circular air jets impinging on a surface parallel to the jet plate are experimentally studied. The length-to-diameter ratio of nozzles of the jet plate is 1.0. The flow, after impingement, is constrained to exit in two opposite directions from the confined passage formed between the jet plate and target plate. Mean jet Reynolds numbers based on the nozzle exit diameter (d) covered are 3,000, 5,000, 7,500, and 10,000; jet-to-plate distances studied are d, 2d, and 3d. Streamwise jet-to-jet distances of 3d, 4d, and 5d, and a constant spanwise pitch of 4d, are considered. The jet plates have ten spanwise rows in the streamwise direction and six jets in each spanwise row. The flat heat transfer surface is made of thin stainless-steel metal foil. Local temperature distribution on a target plate is measured using a thermal infrared camera. Wall static pressures in the streamwise direction are measured midway between the spanwise jets to estimate cross-flow velocities and individual jet velocities. The streamwise distribution of the jet flow and the cross flow is found to be least influenced by the streamwise pitch variation for the range of parameters considered during the present study. Heat transfer characteristics are explained partially on the basis of flow distribution. The cooling performance, based on the strip-averaged Nusselt number per unit mass flow rate of coolant per unit area of cooled surface, indicates deterioration for lower streamwise pitch and higher jet-to-plate distance.  相似文献   

18.
Large eddy simulations (LESs) of turbulent horizontal buoyant jets are carried out using a high-order numerical method and Sigma subgrid-scale (SGS) eddy-viscosity model, for a number of different Reynolds (Re) and Richardson (Ri) numbers. Simulations at previous experimental flow conditions (Re = 3200, 24, 000 and Ri = 0, 0.01) are carried out first, and the results are found to be qualitatively and quantitatively similar to the experimental results, thus validating the numerical methodology. The effect of varying Ri (values 2×10?4, 0.001, 0.005, and 0.01) and Re (3200 and 24, 000) is studied next. The presence of stable stratification on one side and unstable stratification on the other side of the jet centreline leads to an asymmetric development of horizontal buoyant jets. It is found that this asymmetry, the total radial spread and the vertical deflection are significantly affected by Ri, while Re affects only the radial asymmetry. The need for developing improved integral models, accounting for this asymmetry, is pointed out. Turbulent production and dissipation rates are investigated, and are found to be symmetric in the horizontal plane, but asymmetric in the mid-vertical plane. A previously proposed model, for correlation between the vertical component of the fluctuating scalar flux vector and the vertical cross-correlation component of the Reynolds tensor, is modified based on the current LES results. Instantaneous scalar and velocity fields are analysed to reveal the structure of horizontal buoyant jets. Similar to the developed turbulent jet, the flow close to the nozzle too is found to be markedly different in the stable and unstable stratification regions. Persistent coherent vortex rings are found in the stable stratification region, while intermittent breakdown of vortex rings into small-scale structures is observed in the unstable stratification region. Similarities and differences between the flow structures in the horizontal buoyant jet configuration and those in the jet in crossflow configuration are discussed. Finally, a dynamic mode decomposition analysis is carried out, which indicates that the flow in the unstable stratification region is more energetic and prone to instabilities, as compared to the flow in the stable stratification region.  相似文献   

19.
The laminar boundary layer separation flow over a two-dimensional bump controlled by synthetic jets is experimentally investigated in a water channel with hydrogen-bubble visualisation and particle image velocimetry (PIV) techniques. The two-dimensional synthetic jet is applied near the separation point. Two Reynolds numbers (Re = 700 and 1120) based on the bump height and free-stream velocity are adopted in this experiment, and seven different excitation frequencies at each Reynolds number are considered, focusing on the separation control as well as the vortex dynamics. The experimental results show that the optimal control can only be achieved within some excitation frequencies at both Reynolds numbers. However, beyond this range, further increasing the excitation frequency leads to an increase in the separation region. The proper orthogonal decomposition (POD) technique and vortex identification by swirling strength (Λci) are applied for the deeper analysis of the separated flow. The reconstructed Λci field by the first four POD modes is used and vortex lock-on phenomenon is observed. It is found that the negative synthetic jet vortex with clockwise rotation draws the separated wake shear layer as it is convected downstream, and then they syncretise together. Thus, the new vortex is induced and shedding downstream periodically.  相似文献   

20.
The paper deals with the numerical study of heat and mass transfer in the process of direct evaporation air cooling in the laminar flow of forced convection in a channel between two parallel insulated plates with alternating wet and dry zones along the length. The system of Navier–Stokes equations and equations of energy and steam diffusion are being solved in two-dimensional approximation. At the channel inlet, all thermal gas-dynamic parameters are constant over the cross section, and the channel walls are adiabatic. The studies were carried out with varying number of dry zones (n = 0–16), their relative length (s/l = 0–1) and Reynolds number Re = 50–1000 in the flow of dry air (φ0 = 0) with a constant temperature at the inlet (T 0 = 30 °C). The main attention is paid to optimization analysis of evaporation cell characteristics. It is shown that an increase in the number of alternating steps leads to an increase in the parameters of thermal and humid efficiency. With an increase in Re number and a decrease in the extent of wet areas, the efficiency parameter reduces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号