首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O(1D), produced from the photolysis of N2O at 2139 Å, reacts with N2O in accord with: We have used the method of chemical difference to obtain an accurate measure of k2/k3 = 0.59 ± 0.01. Furthermore, the quantum yield of production of O(3P), either on direct photolysis or on deactivation of O(1D) by N2O, is less than 0.02 and probably zero.  相似文献   

2.
Tertiary-amyl amine has been decomposed in single-pulse shock-tube experiments. Rate expressions for several of the important primary steps are This leads to D(CH3? H) – D(NH2? H) = ?10.5 kJ and D[(CH3)3C? H] – D[(CH3)2NH2C? H] = + 6 kJ. The present and earlier comparative rate single-pulse shock-tube data when combined with high-pressure hydrazine decomposition results-(after correcting for fall off effects through RRKM calculations) gives where kr(…) is the recombination rate involving the appropriate radicals. This suggests that in this context amino radical behavior is analogous to that of alkyl radicals. If this agreement is exact, then Rate expressions for the primary step in the decomposition of a variety of primary amines have been computed. In the case of benzyl amine where data exist the agreement is satisfactory. The following differences in bond energies have been estimated:   相似文献   

3.
The ultraviolet absorption spectrum of the neopentyl peroxy radical (CH3)3CCH2O2, and the kinetics and products of its self reaction have been studied in the gas phase at 298 K. Absorption cross sections were quantified over the wavelength range 230–290 nm. The measured cross section at 250 nm was; Errors represent statistical (2σ) together with our estimate of potential systematic errors(15%). The kinetics of the decay of the UV absorption following the generation of the neopentyl peroxy radicals was complicated by the rapid decomposition of the (CH3)3CCH2O radicals formed in channel (4a). By measuring the yield of t-butyl peroxy radicals, the branching ratio k4a/(k4a + k4b) was determined to be 0.39 ± 0.03. The rate constant for the self reaction of neopentyl peroxy radicals was k4 = (1.07 ± 0.22) × 10?12 cm3 molecule?1 s?1. Quoted errors represent 2σ. These results are discussed with respect to the available literature data. © John Wiley & Sons, Inc.  相似文献   

4.
Rate constants for the combination of methyl radicals with NO and O2 have been measured by flash photolysis of azomethane coupled with product analysis by gas chromatography. Values of the rate constants have been obtained over the pressure region from 50 to 700 torr with He, N2, and Ar as quenching molecules. The high-pressure limits were obtained through an RRKM model calculation and were found to be The rate constants were measured relative to the methyl combination reaction k1 with k1 = 9.5 × 10?11 cm3/molec · sec. The RRKM model suggests D0(CH3? O2) = 32 ± 3 kcal/mole.  相似文献   

5.
The kinetics of the reaction of O + CH3OCH3 were investigated using fast-flow apparatus equipped with ESR and mass-spectrometric detection. The concentration of O(3P) atoms to CH3OCH3 was varied over an unusually large range. The rate constant for reaction was found to be k = (5.0 ± 1.0) × 1012 exp [(?2850 ± 200/RT)] cm3 mole?1 sec?1. The reaction O + CH3OH was studied using ESR detection. Based on an assumed stoichiometry of two oxygen atoms consumed per molecule of CH3OH which reacts, we obtain a value of k = (1.70 ± 0.66) × 1012 exp [(?2,280 ± 200/RT)] cm3 mole?1 sec?1 for the reaction The results obtained in this study are compared with the results from other workers on these reactions. The observation of essentially equal activation energies in these two reactions is indicative of approximately equal C? H bond strengths in CH3OCH3 and CH3OH. This is in agreement with recent measurements of these bond energies.  相似文献   

6.
Kinetics of protonation of Li+, Na+, K+, and Cs+ salts of anthracene radical anions (A?·,Cat+) and dianions (A2?, 2Cat+) by MeOH and MeOD in tetrahydrofuran (THF) and dimethoxyethane (DME) led to the determination of the isotope effect (kH/kD) in the following reactions: Studies of cation and solvent influence on the rate constants of these reactions and on the magnitude of the isotope effect permitted us to draw some conclusions about the structure of the pertinent transition states. It seems that only the tight A?·,Na+ pairs participate in the protonation, and on this basis the fraction of tight ion paris of A?·,Na+ in DME was estimated. Our results have been compared with data reported in the literature.  相似文献   

7.
The absolute rate constant for the reaction of phenyl radical with acetylene has been measured at 20 torr total pressure in the temperature range of 297 to 523 K using the cavity-ring-down technique. These new kinetic data could be quantitatively correlated with the data obtained earlier with a relative rate method under low-pressure (10?3–10?2 torr) and high-temperature (1000–1330 K) conditions. These kinetic data were analyzed in terms of the RRKM theory employing the thermochemical and molecular structure data computed with the BAC-MP4 technique. The calculated results reveal that the total rate constant for the C6H5 + C2H2 reaction (kt) is pressure-independent, whereas those for the formation of C6H5C2H (kb) and the C6H5C2H2 adduct (kc) are strongly pressure-dependent. A least-squares analysis of the calculated values for 300–2000 K at the atmospheric pressure of N2 or Ar can be given by and all in units of cm3/s. The latter equation effectively represents the two sets of experimental data. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
NO2 was photolyzed with 2288 Å radiation at 300° and 423°K in the presence of H2O, CO, and in some cases excess He. The photolysis produces O(1D) atoms which react with H2O to give HO radicals or are deactivated by CO to O(3P) atoms The ratio k5/k3 is temperature dependent, being 0.33 at 300°K and 0.60 at 423°K. From these two points, the Arrhenius expression is estimated to be k5/k3 = 2.6 exp(?1200/RT) where R is in cal/mole – °K. The OH radical is either removed by NO2 or reacts with CO The ratio k2/kα is 0.019 at 300°K and 0.027 at 423°K, and the ratio k2/k0 is 1.65 × 10?5M at 300°K and 2.84 × 10?5M at 423°K, with H2O as the chaperone gas, where kα = k1 in the high-pressure limit and k0[M] = k1 in the low-pressure limit. When combined with the value of k2 = 4.2 × 108 exp(?1100/RT) M?1sec?1, kα = 6.3 × 109 exp (?340/RT)M?1sec?1 and k0 = 4.0 × 1012M?2sec?1, independent of temperature for H2O as the chaperone gas. He is about 1/8 as efficient as H2O.  相似文献   

9.
3,3-Dimethylbutanol-2 (3,3-DMB-ol-2) and 2,3-dimethylbutanol-2 (2,3-DMB-ol-2) have been decomposed in comparative-rate single-pulse shock-tube experiments. The mechanisms of the decompositions are The rate expressions are They lead to D(iC3H7? H) – D((CH3)2(OH) C? H) = 8.3 kJ and D(C2H5? H) – D(CH3(OH) CH? H) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give and The rate expressions for the decomposition of 2,3-DMB-1 and 3,3-DMB-1 are and   相似文献   

10.
The kinetics and mechanism of the reaction between iodine and dimethyl ether (DME) have been studied spectrophotometrically from 515–630°K over the pressure ranges, I2 3.8–18.9 torr and DME 39.6–592 torr in a static system. The rate-determining step is, where k1 is given by log (k1/M?1 sec?1) = 11.5 ± 0.3 – 23.2 ± 0.7/θ, with θ = 2.303RT in kcal/mole. The ratio k2/k?1, is given by log (k2/k?1) = ?0.05 ± 0.19 + (0.9 ± 0.45)/θ, whence the carbon-hydrogen bond dissociation energy, DH° (H? CH2OCH3) = 93.3 ± 1 kcal/mole. From this, ΔH°f(CH2OCH3) = ?2.8 kcal and DH°(CH3? OCH2) = 9.1 kcal/mole. Some nmr and uv spectral features of iodomethyl ether are reported.  相似文献   

11.
The thermal decomposition of deuterated ethyl chloride CH2DCH2Cl was studied in a static system in the pressure range of 0.1–26 torr, and the Arrhenius expression for the overall decomposition at the high-pressure limit and in the temperature range of 670–1100 K was found to be The intramolecular isotopic effects were first examined in the pressure range of 0.1–26 torr at 837 K, and the branching ratio kH/kD was found to decrease with increasing pressure. The RRKM-theory calculations describe the experimental data well. The intramolecular isotopic effect was also examined in the temperature range of 728–926 K, and the branching ratio at the high pressure limit was given by the expression when kH and kD are the rate constants for the HCl and DCl channels of elimination. The Arrhenius A factors obtained at the high-pressure limit together with the temperature-dependent expression of the branching ratio provided additional experimental data for an assignment (fine-tuned) of the vibrational frequencies of both activated complexes involved in the thermal decomposition of CH2DCH2Cl. The evaluated vibrational frequencies were then used in the RRKM calculations describing the pressure dependence of the intramolecular isotopic effect. The RRKM calculations and the experimental data were in good agreement, supporting the choice of vibrational frequencies for both the activated complexes as well as the transition-state model.  相似文献   

12.
The kinetics of oxygen exchange between water (H2O, D2O) and 18O-labelled bromate ion has been investigated over the range of 1.7 ≤ pH ≤ 14.3 and 20 ≤ °C ≤ 95. At 60° and ionic strength I ? 1.0M (NaNO3), the experimental results were consistent with the rate laws (R in moll?1 s?1): From the temperature dependence of the rate constants the activation parameters ΔH, ΔS and ΔC were derived. In the acid-catalysed region the form of the rate law and the direction of the solvent isotope effect were the same as previously found, but the numerical values of ΔH and k2H/k2D differ considerably. For the spontaneous and the OH?-catalysed exchange reactions bimolecular displacement mechanisms are proposed.  相似文献   

13.
The gas-phase photochlorination of perfluorocyclopentene under continuous and intermittent illumination with 4360-Å radiation was studied between 10° and 60°C. The rate constants for the reactions. (3) (4) were measured as k3 = (1.20 + 0.58) × 108 exp (?6.430 ± 177/RT) l·(mole sec) and k4 = (1.86 ± 0.76) × 107 l·(mole sec).  相似文献   

14.
The effects of NO on the decomposition of CH3ONO have been investigated in the temperature range 450–520 K at a constant pressure of 710 torr using He as buffer gas. The measured time-dependent concentration profiles of CH3ONO, NO, N2O, and CH2O can be quantitatively accounted for with a general mechanism consisting of various reactions of CH3O, HNO, and (HNO)2. The results of kinetic modeling with sensitivity analyses indicate that the disappearance rate of CH3ONO is weakly affected by NO addition, whereas that of the HNO intermediate strongly altered by the added NO. In the presence of low NO concentrations, the modeling of N2O yields leads to the rate constant for the bimolecular reaction, HNO + HNO → N2O + H2O (25): In the presence of high NO concentrations (PNO > 50 torr), the modeling of CH2O yields gives the rate constant for the termolecular radical formation channel, HNO + 2NO → HN2O + NO2 (35): Discussion on the mechanisms for reactions (25) and (35), and the alkyl homolog of (35), RNO + 2NO, is presented herein. © John Wiley & Sons, Inc.  相似文献   

15.
Absolute rate constants for the gas phase reaction of OH radicals with pyrrole (k1) and thiophene (k2) have been measured over the temperature ranges 298–440 and 274–382 K, respectively, using the flash photolysis-resonance fluorescence technique. The rate constants obtained were independent of the total pressure of argon diluent over the range 25–100 torr andwere fit by the Arrhenius expressions and with rate constants at 298 ± 2 K of k1 = (1.03 ± 0.06) × 10?10 cm3 molecule?1 s?1 and k2 = (8.9 ± 0.7) × 10?12 cm3 molecule?1 s?1. [These errors represent two standard deviations (systematic errors could constitute an additional ca. 10% uncertainty)]. These results are discussed with respect to the previous literature data and the atmospheric lifetimes of pyrrole and thiophene.  相似文献   

16.
The competitive reactions between 2-trifluoromethylpropene (TMP) and OCS for O(3P) atoms were studied between 300° and 523°K, using the mercury-senstitized photolysis of N2O as a source of O(3P). From the known value for the rate constant of the O(3P) + TMP reaction, k3 was found to be 1.6 × 10?11 exp (?4500/RT) cm3/particle-sec, where reaction (3) is Mixtures of O3 and OCS were photolyzed at 197°, 228°, 273°, and 299°K with radiation above 4300 Å to produce O(3P) from the photolysis of O3, and thus study the competition between reaction (3) and From the above value of k3, k1 could be computed. When combined with all the previous data, the best espression for k1 is k1 = 1.2 × 10?11 exp (?4300/RT) cm3/particle-sec.  相似文献   

17.
The solubilities of ZnCO3 and Zn5(OH)6(CO3)2 have been investigated at 25°C in solutions of the constant ionic strength 0,2 M consisting primarily of sodium perchlorate. From experimental data the following values for equilibrium constants and GIBBS free energies of formation are deduced: A predominance area diagram for the ternary system Zn2+–H2O–CO2(g) including ZnO, ZnCO3, Zn5(OH)6(CO3)2, and Zn2+ is given.  相似文献   

18.
The reaction of CF3 radicals with H2O (D2O) has been studied over the range of 533–723 K using the photolysis and the pyrolysis of CF3I as the free radical source. Arrhenius parameters for the reactions where X = H or D, relative to CF3 radical recombination are given by where k/k is in cm3/2/mol1/2·s1/2 and θ = 2.303RT/cal/mol. The activation energy and the primary kinetic isotope effect have been compared with those derived from the BEBO method.  相似文献   

19.
The reactions have been studied competitively over the range of 28–182°C by photolysis of mixtures of Cl2 + C2F5I+ CH4. We obtain where θ = 2.303RT J/mol. The use of published data on reaction (2) leads to log (k1cm3/mol sec) = (13.96 ± 0.2) ? (11,500 ± 2000)/θ.  相似文献   

20.
The method of chemical difference was utilized to accurately determine the relative importance of all the reaction steps in the direct photolysis of N2O at 2139 Å (25° and 250°C) and 1849 Å (25° C), as well as in the Hg6(1P1)-sensitized photolysis of N2O at 1849 Å (25°C). In all cases, the primary process is predominantly, if not exclusively, Experiments with trace amounts of C3H6 added showed a slight, but not significant, difference in product ratios (N2 and O2). From these experiments the quantum yield of O(3P) from all possible sources was estimated as 0.02 ± 0.02. Experiments with excess N2 at 1849 Å indicated that O(1S) was not produced in the direct photolysis. The O(1S) yield is probably zero, and certainly <0.05. The O(1D) atom can react with N2O via The ratio k2/k3 was found to be 0.69 ± 0.05 in all cases. When combined with other data from our laboratory, the average value is 0.65 ± 0.07. This represents the value for translationally energetic O(1D) atoms. When excess He was added to remove the excess translational energy, k2/k3 rose to 0.83 ± 0.06, which is in reasonable agreement with the value of 1.01 ± 0.06 found in another laboratory. We conclude that for O(1D) atoms with no excess thermal energy, k2/k3 = 0.90 ± 0.10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号