首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
均匀流中近壁面垂直流向振荡圆柱水动力特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈蓥  付世晓  许玉旺  周青  范迪夏 《物理学报》2013,62(6):64701-064701
对均匀来流下靠近壁面处在垂直流向做强迫振荡运动的光滑圆柱的水动力特性进行了试验研究. 试验在拖曳水池中进行, 雷诺数为2× 105, 通过采集顺流向和垂直流向的力, 得到了阻力系数、升力系数、相位角等与间隙比、振荡频率和振幅之间的关系. 通过研究得到如下结论: 1)振荡圆柱的平均阻力系数在近壁面处随间隙比的减小而骤降; 2)振荡圆柱泄涡受到完全抑制的临界间隙比要小于静止圆柱; 3)近壁面的存在对振荡圆柱的能量传递有着重要的影响, 自由边界圆柱强迫振荡所得到的水动力系数不能用来预报海底管道的涡激振动; 4)对于振荡圆柱, 附加质量系数只有在一定的频率范围内才是定值, 且在低频率区域其绝对值随间隙比减小而增大; 5)圆柱在进行强迫振荡时, 其平均阻力系数、振荡阻力系数和振荡升力系数均随无因次振幅的增加而增大. 关键词: 海底管道 强迫振荡 水动力特性 涡激振动  相似文献   

2.
A tailor-made convective heat transfer test facility is constructed to study the single-phase convective heat transfer of deionized water and 30 vol% and 60 vol% aqua–ethylene glycol in a stainless steel tube of 4 mm in inner diameter and 1 m in length. The heat flux is varied between 1 and 4 kW·m?2 and for mass flux ranging from 160 to 475 kg·m?2 s?1. The experiments were predominantly conducted only for laminar flow regime. Finally, the heat transfer coefficient is recorded and compared with the conventional theories. It is observed that the presence of ethylene glycol in water decreases the heat transfer coefficient by more than 50%, due to the decreased Reynolds number and thermal conductivity of the mixture.  相似文献   

3.
N. Onur  K. Arslan 《实验传热》2015,28(1):89-105
In this study, steady-state laminar forced flow and heat transfer in a horizontal smooth trapezoidal duct having different corner angles were experimentally investigated in the Reynolds number range from 102 to 103. Flow is hydrodynamically fully developed and thermally developing under a uniform surface temperature condition. Based on the present experimental data of laminar flow in the thermal entrance region, new engineering correlations were presented for the heat transfer and friction coefficients for each corner angle. The results have shown that as the Reynolds number increases heat transfer coefficient increases but Darcy friction factor decreases. Also, it is observed that average Nusselt number increases while average Darcy friction factor decreases with increasing corner angle of the duct.  相似文献   

4.
In this study, heat transfer coefficients and pressure drops of R-134a inside round and flat tubes are investigated experimentally with mass flux of 450, 550, and 650 kg m?2 s?1 at saturation temperatures of 35°, 40°, and 45°C. The effects of mass flux and saturation temperature on heat transfer coefficient and pressure drop are examined. The maximum enhancement factor and pressure drop penalty are obtained by flat tube (FT-2) up to 2.101 at 450 kg m?2 s?1 and 3.01 at 650 kg m?2 s?1, respectively. The correlation for flat tubes is proposed to predict the heat transfer coefficient within ±20% error.  相似文献   

5.
Results of an experimental investigation of heat and mass transfer and wall shear stress at gas-liquid flow in a vertical tube are presented. Local wall shear stress and mass transfer coefficients were measured by an electrochemical method. Experiments were performed in the range of Reynolds number variation with respect to liquid Rci, = 8.5 × 103-5.4 × 104, gas Reg = 3 × 103-1.4 × 105, pressure 0.1-1 MPa. The relationship between heat and mass transfer and wall shear at gas-liquid flows is shown to exist. The results of measuring heat and mass transfer coefficients are generalized by formulas applied to calculate heat and mass transfer in single-phase turbulent flow.  相似文献   

6.
H. Gül 《实验传热》2013,26(1):73-84

An experimental investigation was made to study heat transfer in a pipe which is oscillated about an axis that is parallel to, but offset from, the pipe axis. Air was used as working fluid. The experimental setup was designed so as to provide oscillating motion of a test pipe. The measurement systems were installed on the oscillating section. For both steady and oscillating flows, the bulk air temperature and wall temperature, pressure drop, and frequency were measured. The parameters for this study were chosen as Reynolds number from 5,000 to 20,000 and oscillating frequencies from 10 to 20 Hz. The variations of Nusselt number versus these parameters were determined and presented graphically. Heat transfer enhancement of 42% was achieved at constant pumping power for oscillatory flow.  相似文献   

7.
This paper presents the experimental analysis of aluminum BPHX, with dimensions of 215 × 80 × 61 mm, having transversal offset strip fins with two pitches of 5 and 6.8 mm using liquid to liquid to measure the heat transfer and pressure drop performance in the Reynolds range of transitional to turbulent regime [103, 104]. Firstly, the heat exchangers were tested using water on both sides. A heat transfer and friction coefficients empirical correlations were determined, and the resulted functions were compared with two other models presented in the literature. Secondly, the heat exchangers were measured using water and engine oil as hot fluid.  相似文献   

8.
Kun Luo 《Physics letters. A》2010,374(30):3046-3052
Combined multi-direct forcing technique and the immersed boundary method is applied to investigate the response of force behaviors of a fixed spherical particle to an oscillating flow. The influences of the inlet oscillating flow at a mean Reynolds number of 300 with six different oscillating frequencies and three oscillating amplitudes are investigated. Three different zones with different behaviors are identified and the specific behaviors of the drag and the lift coefficients are analyzed. The averaged drag coefficient and the maximum lift force exerted on the particle increase with the increment of the oscillating Reynolds number or the oscillating amplitude. When the frequency of the inlet flow is equal to the natural vortex shedding frequency, the average drag coefficient reaches the maximum value. A linear relation between the gradient of the maximum lift coefficient and the frequency as well as the amplitude of the inlet oscillating flow is observed in certain regime.  相似文献   

9.
G. Li  Y. Zheng  G. Hu  Z. Zhang 《实验传热》2013,26(2):198-211
Experiments have been carried out to study heat transfer enhancement from a heated rectangular flat plate in pulsating flows. A heat transfer empirical formula of the heated rectangular flat plate in pulsating flows was developed that correlates the heat transfer enhancement factor to the Womersley number (α = 3.3–23.8), the Reynolds number (Re = 527–4,217), and the pressure coefficient (C p  = 41.3–31,644.6). The results demonstrate that heat transfer from the rectangular flat plate was enhanced significantly under proper conditions. In addition, the influence of the Reynolds number on the heat transfer enhancement factor increases as the pressure amplitude increases.  相似文献   

10.
This study aimed at exploring influence of T-semi attached rib on the turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. For this purpose, convection heat transfer of the silver-water nanofluid in a ribbed microchannel was numerically studied under a constant heat flux on upper and lower walls as well as isolated side walls. Calculations were done for a range of Reynolds numbers between 10,000 and 16,000, and in four different sorts of serrations with proportion of rib width to hole of serration width (R/W). The results of this research are presented as the coefficient of friction, Nusselt number, heat transfer coefficient and thermal efficiency, four different R/W microchannels. The results of numerical modeling showed that the fluid's convection heat transfer coefficient is increased as the Reynolds number and volume fraction of solid nanoparticle are increased. For R/W=0.5, it was also maximum for all the volume fractions of nanoparticle and different Reynolds numbers in comparison to other similar R/W situations. That's while friction coefficient, pressure drop and pumping power is maximum for serration with R/W=0 compared to other serration ratios which lead to decreased fluid-heat transfer performance.  相似文献   

11.
Abstract

The radiation enhanced diffusion (coefficient D*) of U-233 and Pu-238 in UO2 and (U, Pu)O2 with 2.5 and 15% Pu was measured during fission in a nuclear reactor. Normal diffusion sandwiches with a thin tracer layer were used. A radio-frequency furnace allowed the temperatures to be varied between 130 and 1400°. Neutron fluxes (7 × 1012 to 1.2 × 1014 n cm?2 s?1) and irradiation times (56 to 334 h) were also varied to cover ranges of fission rates [Fdot] between 7× 1011 and 6.4 × 1013 f cm?3 s?1 and of doses F between 4.2 × 1017 and 3.1 × 1019 f cm3. Below ~1000°, D* was completely athermal and increased linearly with [Fdot]. It was described by D* = A[Fdot] with A = 1.2× 10?29cm5. A possible temperature dependence was indicated between ~1000and 1200°. The results are explained in terms of thermal and pressure effects of fission spikes and are related with other studies of radiation damage as well as with technologically interesting processes occurring in UO2 during irradiation.  相似文献   

12.
Kinetic and thermodynamic (formal potential) data relating to the synthetically useful Li/Li+ couple in tetrahydrofuran (THF) solvent at a range of temperatures (196–295 K) are reported. Formal potentials, have been measured versus the standard reference electrode, in THF. At 295 K the following data have been obtained using a mathematical model to simulate the electro‐deposition (metal deposition and growth kinetics) processes of lithium (Li) on a platinum microelectrode; a of ?3.48 ± 0.005 V, = ?9.2 (±0.5) × 10?4 V K?1, the standard electrochemical rate constant, k0 = 1 (± 0.1) × 10?4 cm s?1, transfer coefficient, α = 0.57 ± 0.03 and diffusion coefficient, D = 8.7 ± 0.1 × 10?6 cm2 s?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, the effect of both hexagonal pin fins (HPFs) and cylindrical pin fins (CPFs) into the rectangular channel on heat transfer augmentation, Nusselt number and friction factor were experimentally investigated. In planning of the experiments, different Reynolds number, pin fin array, pin fin geometry and the ratio of the distance between pin fin spacing (s) to the pin fin hydraulic diameter (s/Dh) were chosen as the design parameters. Air was used as the fluid. The Reynolds number, based on the channel hydraulic diameter of the rectangular channel, was varied from 3188 to 19531. In the experiments, the heating plate was made of stainless steel foil. The foil was electrically heated by means of a high current DC power supply to provide a constantly heated flux surface. The heat transfer results were obtained using the infrared thermal imaging technique. The heat transfer results of the hexagonal pin fins (HPFs) and cylindrical pin fins (CPFs) are compared with those of a smooth plate. Best heat transfer performance was obtained with the hexagonal pin fins. The maximum thermal performance factor ((?), was obtained as Re = 3188, staggered array, s/Dh = 0, ? = 2.28.  相似文献   

14.
Ground source heat pump (GSHP) systems have been applied widely because of their environmental-friendly, energy-saving, and sustainable nature. In this work, heat transfer performance of a single vertical small-scale U-shaped tube ground heat exchanger under hot climatic condition is addressed considering the influences of inlet water temperature, Reynolds number, and backfill materials (raw soil; soil–polyacrylamide (PAM) blend (0.27% blending ratio for PAM). The backfill materials had an important effect on the heat transfer of the ground heat exchanger. At an inlet water temperature of 45°C and Reynolds numbers of 3104 and 4656, the temperature drops of water in the tube in the soil–PAM blend increased by about 0.3 and 0.4°C compared to that in the raw soil. Within Reynolds number from 3104 to 6208, the average surface heat transfer coefficients of the water in the tube in the soil–PAM blend and raw soil at an inlet water temperature of 45°C were 411 and 231 W m?2K?1, respectively. The results suggest that adding the PAM into soil can be an effective manner for enhancing the heat transfer of the ground heat exchanger. The dimensionless surface heat transfer correlation of the water in the U-tube heat exchanger in the soil–PAM blend was obtained. The model could better fit the experimental data within ±10% deviation.  相似文献   

15.
The rate coefficient for the gas-phase reaction of OH radical with α-pinene was measured at 298 K using relative rate methods, with propylene as a reference compound. The ratio of the rate coefficient for the reaction of OH radicals with α-pinene to that of with OH radicals with propylene was measured to be 1.77 ± 0.21. Considering the absolute value of the rate coefficient of the reaction of OH radicals with propylene as (3.01 ± 0.42)×10?11 cm3 molecule?1 s?1, the rate coefficient for the reaction of OH radicals with α-pinene was determined to be (5.33 ± 0.79)×10?11 cm3 molecule?1 s?1. To gain a deeper insight into the reaction mechanism, theoretical calculations were also carried out on this reaction. The rate coefficient of OH radical with α-pinene was calculated using canonical variational transition state theory with small-curvature tunnelling. The kinetics data obtained over the temperature range of 200–400 K were used to derive the Arrhenius expression: k(T) = 3.8×10?28 T5.2 exp[2897/T] cm3 molecule?1 s?1. The OH-driven atmospheric lifetime (τ) and ozone formation potential of α-pinene were calculated and reported in this work.  相似文献   

16.
The two-phase heat transfer coefficients of R404A and R134a in a smooth tube of 7.49-mm inner diameter were experimentally investigated at low heat and mass flux conditions. The test section is a 10-m-long counter-flow horizontal double-tube heat exchanger with refrigerant flow inside the tube and hot fluid in the annulus. The heat transfer coefficients along the length of the test section were measured experimentally under varied heat flux conditions between 4 and 18 kW m?2 and mass flux ranging between 57 and 102 kg m?2 s?1 (2.5 to 4.5 g s?1) for saturation temperatures of ?10°C, ?5°C, and 0°C. The saturation temperatures correspond to pressures of 4.4, 5.2, and 6.1 bar for R404A and 2.0, 2.4, and 3.0 bar for R134a, respectively. The results showed that under the tested conditions, the contribution of the nucleate boiling mechanism is predominant in the heat transfer coefficient throughout the flow boiling process. The Kattan–Thome–Favrat flow pattern maps confirm the occurrence of stratified and stratified-wavy flow patterns for all of the tested conditions. The average heat transfer coefficient of R404A is estimated to be 26 to 30% higher than that of R134a for the same saturation temperature.  相似文献   

17.
The local heat transfer and static pressure on a heated plate is reported with an air jet produced by a circular nozzle under tone-excitation with a frequency range of fe = 0–300 Hz. The Reynolds numbers were (1.7 – 4.2) × 104, and the nozzle-to-plate spacings were L/d = 6, 8, and 10. For all spacing, the isopressure and Nusselt number contours changed a shape from a concentric circle to an elliptic or peanut shape and changed back to a concentric circle with an increase of the tone-exciting frequency. These phenomena might be attributed to the induced vorticities observed as a non circular orifice jet.  相似文献   

18.
Jing Li  Huaqing Xie 《Ionics》2013,19(1):105-112
A sensitive hydroxylamine sensor is developed by electrodeposition of Pt nanoparticles on pre-synthesized polypyrrole nanoparticles modified glassy carbon electrode. The modified electrode presents distinctly electrocatalytic activity toward hydroxylamine oxidation. The kinetic parameters such as the overall numbers of electrons involved in hydroxylamine oxidation, the electron transfer coefficient, standard heterogeneous rate constant, and diffusion coefficient are evaluated. The current response increases linearly with increasing hydroxylamine concentrations and exhibits two wide linear ranges of 5.0?×?10?7–1.1?×?10?3 and 1.1?×?10?3–18.8?×?10?3 M with a detection limit of 0.08 μM (s/n?=?3). The proposed electrode presents excellent operational and storage ability for determining hydroxylamine. Moreover, the sensor shows good sensitivity, selectivity, and reproducibility properties.  相似文献   

19.
针对火电空冷凝汽器采用的扁平管蛇形翅片长度较大,空气在翅片间流动对强化传热的效果受到边界层发展抑制的缺陷,根据锯齿翅片通过破坏边界层发展强化传热的思想,提出一种扁平管交错蛇形短翅片结构。实验结果表明,扁平管交错蛇形短翅片的传热性能优于原有结构,在不同雷诺数Re范围,努塞尔数Nu增加了1.4%~16%;同时空气侧流动阻力也明显增加,摩擦系数f增加了18%~45%。由综合评价指标PEC也可以得到,扁平管交错蛇形翅片有效地强化了空气侧的换热。  相似文献   

20.
Here we revisit the inner–outer interaction model (IOIM) of Marusic et al. (Science, vol. 329, 2010, pp. 193–196) that enables the prediction of statistics of the fluctuating streamwise velocity in the inner region of wall-bounded turbulent flows from a large-scale velocity signature measured in the outer region of the flow. The model is characterised by two empirically observed inner–outer interactions: superposition of energy from outer region large-scale motions; and amplitude modulation by these large-scale motions of a small-scale ‘universal’ signal (u*), which in smooth-wall flows is Reynolds number invariant. In the present study, the inner–outer interactions in rough-wall turbulent boundary layers are examined within the framework of the IOIM. Simultaneous two-point hot-wire anemometry measurements enable quantification, via the model parameters, of the strengths of superposition and amplitude modulation effects in a rough-wall flow, and these are compared to a smooth-wall flow. It is shown that the present rough-wall significantly reduces the effects of superposition, while increasing the amplitude modulation effect. The former is true even in flows that exhibit outer region similarity. Using the model parameters obtained from the two-point measurements, predictions of inner region streamwise velocity statistics and spectra are compared to measurements over a range of friction and roughness Reynolds numbers. These results indicate that the u* signal does depend on roughness Reynolds number (k+s), but is robust to changes in friction Reynolds number (δ+). Additionally, the superposition strength is shown to be relatively independent of both roughness and friction Reynolds number. The implications of the present results on the suitability of the IOIM as a predictive tool in rough-wall turbulence are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号