首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diphenylbutadiene-bridged gadolinium complex [GdCl2(THF)3]2(μ-Ph2C4H4) · 3THF (1) has been obtained by the reaction of Gd(III) chloride with diphenylbutadienepotassium. The molecular structure of 1 was determined by X-ray diffraction. The complex 1 has a binuclear structure in which a bridging diphenylbutadiene ligand is η4-bonded to the Gd atoms connecting two GdCl2(THF)3 units. Both Gd atoms have a distorted octahedral environment. At the Gd atom the two Cl atoms are in trans positions and the four other coordination sites are occupied by the three O atoms of THF molecules and the η4-bonded C4H4 fragment of a diphenylbutadiene ligand. In the two η4-bonded GdC4H4 fragments one of the Gd-C η4-distances is significantly elongated (2.86(3) and 2.97(3) Å) compared with other three (2.65(3)–2.69(3) and 2.67(3)—2.77(3) Å). The magnetic moment of Gd, equal to 8.1 BM, is typical for Gd3+ compounds that is evidence for a formal charge of DPBD ligand of −2 in complex 1. However, the expected distribution of the C-C bond of the diene fragment as long—short—long is not realized.  相似文献   

2.
The ionic coupling of [Os4H2(CO)12]2− with [Ru(η6-C6H6)(MeCN)3]2+ affords the neutral mixed metal cluster Os4Ru(μH)2(CO)12(η6-C6H6) 1. The reaction of 1 with trimethylphosphite leads to the initial formation of the addition product Os4Ru(μH)2(CO)12(η6-C6H6)P(OMe)3 2, but this complex rearranges in solution to give Os4Ru(μ-H)3(CO)12(μ3-η6-C6H5)P(OMe)3 3. An X-ray structure of 3 shows that the metal core of the cluster is a ruthenium-spiked Os4 tetrahedron, with one hydrogen atom from the arene having transferred to the Os4 core, and one arene carbon bridging an Os-Os edge, while the ring as a whole remains η6-bound to the Ru atom.  相似文献   

3.
Two carbon-rich starburst gold(I) acetylide complexes [TEE][Au(PCy3)]4 (3, [TEE]H4=tetraethynylethene) and [TEB][Au(PCy3)]3 (6, [TEB]H3=1,3,5-triethynylbenzene) were prepared and their UV–vis absorption, emission and excitation spectra have been recorded. In fluid CH2Cl2 solutions, 3 exhibits prompt 1(ππ*) fluorescence with λ0–0 and λmax at 413 and 428 nm, respectively, while 6 displays 3(ππ*) phosphorescence with λ0–0 and λmax at 446 and 479 nm, respectively. The crystal structure of 3·CH2Cl2 has been determined.  相似文献   

4.
The bimetallic [Pt(NH3)4]2[W(CN)8][NO3]·2H2O is characterised by single-crystal X-ray diffraction [S.G.P21/m(11), a=8.0418(7), b=19.122(2), c=9.0812(6) Å, Z=2]. All platinum centres have the square-plane D4h geometry with average dimensions Pt(1)–N 2.042(2) and Pt(2)–N 2.037(10) Å. The octacyanotungstate anion has the square-antiprismatic D4d configuration with average dimensions W(1)–C 2.164(13), C–N 1.140(12), W(1)–N 3.303(5) Å. The structure exhibits two different mutual orientations of Pt versus W units resulting in Pt(2)–W(1), W(1)* separations of 4.77(2), 4.55(2)* and Pt(1)–W(1) of 6.331(8) Å. A centrosymmetric structure reveals groups of two distinct columns: the first is formed by intercalated NO3 between parallel [Pt(1)(NH3)4]2+ planes and the second consists of [W(CN)8]3− interlayered by, parallel to square faces of W-antiprisms, [Pt(2)(NH3)4]2+. The structure is stabilised through a three-dimensional hydrogen bond network via nitrogen atoms of cyanide ligands, hydrogen atoms of NH3 ligands, water molecules and oxygen atoms of NO3 counteranions. The vibrational pattern and the range of ν(CN) frequencies attributable to the electronic environment of W(V) and W(IV) are consistent with the ground state Pt(II)↔W(V) charge transfer.  相似文献   

5.
The nitrosyl complexes trans-[ReCl(NO)(dppe)2]A2 (1; A = BF4 or NO3; dppe = Ph2PCH2CH2−PPh2) and trans-[ReCl(NO)(dppe)2][BF4] (2) have been prepared from the reactions of NO[BF4] or NO with trans-[ReCl(N2)dppe)2]. An unusual facile oxidation of NO to nitrate is involved in the formation of (1, A = NO3), the X-ray structure of which is reported.  相似文献   

6.
Addition of H2 to CH2Cl2 solutions of [(diene)Rh(L)2][closo-CB11H12] (diene=norbornadiene, cyclooctadiene, L=PCy3, P(OMe)3, 1/2dppe) results in the formation of the exo-closo complexes [(PR3)2Rh(closo-CB11H12)]. These have been characterised in solution by 1H- and 11B-NMR spectroscopy, and for L=PCy3 by a single crystal X-ray diffraction study. This suggests that the metal fragment is bound with the cage through the 7,8- and not the 7,12-{BH} vertices. DFT calculations on a model system where L=PMe3 show that there is only a negligible energy difference between these two isomers (1 kcal mol−1), suggesting that both represent stable structures. The salient spectroscopic markers that indicate an interaction of [closo-CB11H12] with a metal fragment are discussed and compared across a range of metal complexes. Large upfield shifts in the 11B-NMR spectrum and a small downfield shift of the CH vertex in the 1H-NMR spectrum are shown to the most reliable indicators of borane interaction in solution.  相似文献   

7.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

8.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

9.
Two metastable nitrosyl linkage isomers SI and SII are generated by light irradiation in the spectral range 370–500 nm in the two diamagnetic compounds [RuNO(NH3)5][Co(CN)6] and [RuNO(NH3)5]2[ZrF6]3 as well as in the paramagnetic compound [RuNO(NH3)5][Cr(CN)6]. The frequencies of the ν(NO) stretching vibrations of SI and SII identify SI as the isonitrosyl Ru–O–N isomer and SII as the side-on η2 isomer of NO. The population, i.e., the number of generated linkage isomers, is determined from the decrease of the area of the fundamental ν(NO) and of the higher harmonic 2 · ν(NO) of the ν(NO) stretching vibration of the ground state. Using differential scanning calorimetry (DSC) the heat release during the thermal decay of the metastable linkage isomers is determined. The activation energies, frequency factors, and the energetic position of the metastable linkage isomers are determined from the DSC and infrared spectroscopic experiments. It is found that the exchange of the counter ion significantly influences the energetic positions of the linkage isomers, while the activation energy and frequency factor are much less affected.  相似文献   

10.
Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = S(CH2)4S, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%.  相似文献   

11.
Reaction of trans-[ReCl(CNR)(dppe)2] (R = Me (Ia) or tBu (Ib); DPPE = Ph2PCH2CH2PPh2) in CH2Cl2 with cynamide in the presence of TlBF4 forms the new cynamide-isocyanide complexes trans-[Re(CNR)(NCNH2)(dppe)2][BF4] (R = Me (IIa) or tBu (IIb)), which upon treatment by tBuOK or Et3N give trans-[Re(NCNH)(CNR)(dppe)2] (R = Me (IIIa) or tBu (IIIb)). The electrochemical behaviour of these species was studied by cyclic voltammetry and controlled potential electrolysis at a Pt electrode in an aprotic solvent, and cathodic reduction of II results in the formation of III.  相似文献   

12.
Reaction of the bis(dihydrogen) ruthenium complex RuH2(H2)2(PCy3)2 (1) with an excess of 9-borabicyclononane yields Ru[(μ-H)2BC8H14]2(PCy3) (6) and the phosphine adduct PCy3·HBC8H14. The new complex is characterized by NMR spectroscopy and X-ray diffraction. New X-ray data on 9-BBN dimer, from a measurement at 180 K, are also reported. DFT calculations (B3LYP) on Ru[(μ-H)2BC8H14]2(PMe3) (7), the PMe3 analogue of 6, confirm the ruthenium (II) formulation with two dihydroborate ligands. The data obtained using PH3 or PMe3 as models for PCy3 in PR3·HBC8H14 are also discussed.  相似文献   

13.
An η1-butadienyl complex [trans-η1-CH2=C(Me)C=CH2Pd(PPh3)2Cl] (1) reacted with [(μ-η2:η2-1,3-butadiene)Pd2(PPh3)(μCl)Cl] (2) to result in displacement of the diene ligand of 2 accompanied by exchange of PPh3 of 1 with Cl anion of 2 producing a butadienyl tripalladium cluster [(μ-CH2=C(Me)C=CH2)Pd(PPh3)Cl2 · Pd2(PPh3)2(μ-Cl)] (3) stabilized by the zwitterionic structure in moderate yield. The X-ray structure analysis of 3 revealed rigid binding of [Pd2(PPh3)2(μ-Cl)]+ and [CH2 =C(Me)C=CH2Pd(PPh3)Cl2] through the π-bond coordination of the butadienyl group to the dipalladium cation.  相似文献   

14.
Reaction of the activated mixture of Re2(CO)10, Me3NO and MeOH with a 1:1 mixture of rac (d/l)- and meso-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane (hptpd) yields a mixture of (d/l)- and meso-[{Re2(μ-OMe)2(CO)6}2(μ,μ′-hptpd)] 1. The diastereomers can be easily separated by selective dissolution of d/l-1 in benzene, and give clearly distinguishable 1H- and 31P-NMR spectra. The fluxional behavior of d/l-1 in solution has been studied by variable-temperature 1H- and 31P-{1H}-NMR spectroscopy. The crystal structures of both d/l- and meso-1 have been determined. Both molecules consist of two {Re2(μ-OMe)2(CO)6} moieties which are bridged by the two P---CH2---CH2---P moieties of the hptpd ligand. Whilst the molecules of meso-1 possess crystallographic i-symmetry, those of d/l-1 do not have any crystallographic symmetry. These diastereomers therefore give clearly distinguishable Raman spectra in the solid state. Reaction of tris[2-(diphenylphosphino)ethyl]phosphine (tdppep) with the activated mixture affords the complex [{Re2(μ-OMe)2(CO)6}(μ,η2-tdppep)] 2, and the analogous reaction involving bis[2-diphenylphospinoethyl)phenylphosphine (triphos) gives [{Re2(μ-OMe)2(CO)6}(μ,μ′,η3-triphos){Re2(CO)9}] 3 and [{Re2(μ-OMe)2(CO)6}(μ,η2-triphos)] 4.  相似文献   

15.
The complexes [Ru(S,S)2(PPh3)2] [S,S = EtCOCS2, (CH2)4NCS2] react with a variety of tertiary phosphines with the substitution of triphenylphosphine and the formation of [Ru(S,S)2(PR3)2]. The reaction occurs with the formation ofthe cis isomer, except for the complex with PMe2Ph that gives rise to the trans isomer as the crystal structure shows. The effect of the different phosphines on the ruthenium complex is analysed in terms of the spectroscopic and electrochemical properties of the isolated compounds. The cyclic voltammetric studies of the cis complexes show that isomerization to the trans isomer occurs on oxidation. This isomerization is not observed in the trans-[Ru(S,S)2(PMe2Ph)2] complexes that give rise to stable trans-ruthenium(II)/ruthenium(III) couples. In a similar way the diphosphine complexes afford a quasi-reversible cis-ruthenium(II)/ruthenium(III) process.  相似文献   

16.
An X-ray crystal structure determination for the bimetallic complex Mn2(CO)8-[P(NMe2)3]2 reveals that the P(NMe2)3 ligands are trans to the Mn---Mn bond and the Mn---Mn bond distance is relatively long, 2.946(1) Å.  相似文献   

17.
Reaction of C5H4(SiMe3)2 with Mo(CO)6 yielded [(η5-C5H3(SiMe3)2)Mo(CO)3]2, which on addition of iodine gave [(η5-C5H3(SiMe3)2Mo(CO)3I]. Carbonyl displacement by a range of ligands: [L = P(OMe)3, P(OPri)3,P(O-o-tol)3, PMe3, PMe2Ph, PMePh2, PPh3, P(m-tol)3] gave the new complexes [(η5-C5H3(SiMe3)2 MO(CO)2(L)I]. For all the trans isomer was the dominant, if not exclusive, isomer formed in the reaction. An NOE spectral analysis of [(η5-C5H3(SiMe3)2)Mo(CO)2(L)I] L = PMe2Ph, P(OMe)3] revealed that the L group resided on the sterically uncongested side of the cyclopentadienyl ligand and that the ligand did not access the congested side of the molecule. Quantification of this phenomenon [L = P(OMe)3] was achieved by means of the vertex angle of overlap methodology. This methodology revealed a steric preference with the trans isomer (less congestion of CO than I with an SiMe3 group) being the more stable isomer for L = P(OMe)3.  相似文献   

18.
The reaction of trans-[Mo(N2)2(PPh2Me)4] with the tripodal phosphine tris(2-diphenylphosphinoethyl)phosphine, PP3, in benzene has been studied. The product was recrystallized from a mixture of benzene and petroleum ether to give [Mo(PP3)2]·C5H10, whose crystal structure shows a distorted octahedral “MoP6” coordination with both phosphines acting as tridentate ligands.  相似文献   

19.
Two mononuclear RuII complexes of polypyridyl ligands, cis-[Ru(bpy)2(4,4′-bpy)Cl](PF6)·H2O (1) and cis-[Ru(phen)2(CH3CN)2](PF6)2 (2) (bpy=2,2′-bipyridyl, 4,4′-bpy=4,4′-bipyridyl, and PHEN=1,10-phenanthroline), have been synthesized and characterized by elemental analyses, IR and UV–vis spectra. The crystal structures of both complexes have been determined by X-ray diffraction, indicating that each RuII center is hexa-coordinated (RuN5Cl for 1 and RuN6 for 2) and takes a distorted octahedral geometry. The favored feature of both complexes is that they are quite useful complex precursors for further constructing new functional architectures.  相似文献   

20.
The complexation behaviour of cis- und trans-3-diphenylphosphino-4-hydroxyl-tetrahydrofurans with [Rh(COD)2]BF4 is studied with the help of NMR and IR spectroscopy. In dependence of the spatial arrangement of hydroxyl and phosphino group the formation of different intra- and intermolecular bridged O-P complexes has been observed.

Zusammenfassung

Das Komplexierungsverhalten von cis- und trans-3-Diphenylphosphino-4-hydroxy-tetrahydrofuranen mit [Rh(COD)2]BF4 wird mit Hilfe von NMR- und IR-Spektroskopie studiert. In Abhängigkeit von der räumlichen Anordnung von Hydroxy- und Phosphinogruppe zueinander wird die Bildung von intra- bzw. intermolekular verbrückten O-P-Komplexen beobachtet.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号