首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A mathematical model of the cathodeluminescence of free excitons excited by a narrow electron beam in a semiconductor material is described and investigated. The model is based on an analytical solution to equations of the three-dimensional diffusion of excitons. It is shown that the model can be used to estimate the diffusivity of excitons from experimental time-of-flight measurements of samples coated with a lightproof mask with round apertures. The parameters of gallium nitride were used in the modeling.  相似文献   

2.
We show that optical transitions of charged excitons in semiconductor heterostructures are governed in magnetic fields by a novel exact selection rule, a manifestation of magnetic translations. It is shown that the spin-triplet ground state of the quasi-two-dimensional charged exciton X--a bound state of two electrons and one hole-is optically inactive in photoluminescence at finite magnetic fields. Internal bound-to-bound X- triplet transition has a specific spectral position, below the electron cyclotron resonance, and is strictly prohibited in a translationally invariant system. These results allow one to discriminate between free and disorder-affected charged excitons.  相似文献   

3.
We have recently constructed a many-body theory for composite excitons, in which the possible carrier exchanges between N excitons can be treated exactly through a set of dimensionless “Pauli scatterings” between two excitons. Many-body effects with free excitons turn out to be rather simple because these excitons are the exact one-pair eigenstates of the semiconductor Hamiltonian, in the absence of localized traps. They consequently form a complete orthogonal basis for one-pair states. As essentially all quantum particles known as bosons are composite bosons, it is highly desirable to extend this free exciton many-body theory to other kinds of “cobosons” — a contraction for composite bosons — the physically relevant ones being possibly not the exact one-pair eigenstates of the system Hamiltonian. The purpose of this paper is to derive the “Pauli scatterings” and the “interaction scatterings” of these cobosons in terms of their wave functions and the interactions which exist between the fermions from which they are constructed. It is also explained how to calculate many-body effects in such a very general composite boson system.  相似文献   

4.
Disorder effects on the optical absorption spectra of free excitons in direct semiconductor alloys are discussed as function of their Bohr radius. The variation of disorder-induced line broadening with alloy composition is described, with a particular emphasis on the violation of the Nordheim's rule for such spatially extended quasiparticles.  相似文献   

5.
The final goal of this paper is to derive the effective scattering ruling the time evolution of two semiconductor trions using the many-body formalism for composite fermions we have just proposed. However, to understand the importance of the particle composite nature, their bosonic/fermionic character and their overall charge, we also report on scatterings between free electrons, excitons and trions. This leads us to identify the form factors associated to direct processes involving excitons and trions. For transitions between ground states, these form factors reduce to zero and one respectively, in the small momentum transfer limit.  相似文献   

6.
A semiconductor luminescence formula is derived that includes phonon replica of arbitrary order based on a non-perturbative treatment of the electron–phonon interaction. The formula is used to analyze the extraordinarily strong sidebands observed with ZnO nanorods in recent experiments. Sidebands due to free and impurity-bound excitons are compared, and the generic differences between bulk and quantum-well emission are discussed.  相似文献   

7.
In this paper, we introduced the dressed exciton model of the semiconductor micro-cavity device. In the semiconductor micro cavity of vertical-cavity surface-emission device, the excitons first coupled with the cavity through an intra-electromagnetic field and formed the dressed excitons. Then these dressed excitons decayed into the vacuum cavity optical mode, as a multi-particle process. Through the quantum electrodynamics method, the dipole emission density and system energy decayed equation were obtained. And it was predicted that the excitons decay into a very narrow mode when the exciton-cavity coupling becomes strong enough.  相似文献   

8.
We propose a mechanism of increase in the binding energy of an exciton in wide band-gap semiconductors in the presence of optically pumped electron-hole plasma. These excitons with relatively high binding energy (>150 meV) can exist at room temperature when the dielectric constant of semiconductor in the infrared region of spectrum approaches zero. Calculations for CdS show that the density of electron-hole plasma should be higher than 1019 cm?3 for formation of such excitons. We show that there exist a considerable number of close-lying energy levels of excitons with high binding energy in the forbidden band of the semiconductor. We guess that these excitons participate in the process of laser generation in optically pumped semiconductor nanocrystals.  相似文献   

9.
In two-dimensional heterostructures made of semiconductor and organic layers, when resonance between the Wannier and Frenkel excitons is realized, the dipole-dipole interaction coupling them leads to novel effects. First, we discuss the pronounced nonlinear optical properties of the hybrid Frenkel-Wannier excitons appearing when the energy splitting of the excitonic spectrum is large compared to the exciton linewidths (the case of strong resonant coupling). Next, we consider the case of weak resonant coupling for which the Förster mechanism of energy transfer from an inorganic quantum well to an organic overlayer is of great interest: the electrical pumping of excitons in the semiconductor quantum well could be employed to turn on efficiently the organic material luminescence.  相似文献   

10.
Stimulated emission of the quasi-two-dimensional layered semiconductor GaSe in high electric fields and at different orientations of the applied electric field relative to the optical axis of samples was observed and studied. The electric field dependences of the polarized spectrum intensity and electroluminescence quantum yield were determined. Three mechanisms of amplification near the fundamental absorption edge, related to combined interaction of defects and free direct and indirect excitons, were identified.  相似文献   

11.
Using a picosecond laser and a streak camera we have observed the time dependence of the luminescence intensity of free excitons, bound excitons, and excitonic molecules in CdS. The observed kinetics show that the P band is due to bimolecular emission from free excitons and that bound excitons are generated from free excitons through monomelecular process and excitonic molecule through bimolecular process.  相似文献   

12.
The energies of direct and interwell excitons in superlattices based on europium and lead sulfides have been calculated. It is established that these excitons have higher oscillator strengths and binding energies due to the indirect exchange. This circumstance can be used in semiconductor devices operating on exciton transitions.  相似文献   

13.
Spontaneous emission of the free excitons in GaAs quantum wells in a microcavity is enhanced (x 130) or inhibited (x ) by placing excitonic dipoles at either a resonant wavelength and anti-node position or an off-resonant wavelength and node position of the standing-wave vacuum field fluctuations. The resulting spontaneous radiation pattern is highly concentrated into the normal direction for the enhancement case and the spontaneous emission coupling efficiency into a single microcavity resonant mode is estimated to be 0.3. It is expected that semiconductor lasers with substantially reduced threshold currents can be constructed using such a structure.  相似文献   

14.
We work out a theory of piezoelectricity in an actual semiconductor heterostructure which is composed of a lattice-mismatched zinc-blende layer grown on a [001]-oriented substrate. In contrast to earlier theories, we predict a large density of fixed bulk piezoelectric charges, which are induced by strain fluctuations connected with interface roughness. The piezoelectric charges create a high electric field. The random piezoelectric field presents a conceptually new important scattering mechanism. The system of charge carriers in such a heterostructure becomes strongly disordered and includes generally both free electron-hole pairs near the interface and excitons far from it.  相似文献   

15.
The four chief features to be expected in the infra-red absorption spectrum of a semiconductor are :—the intrinsic edge, lattice bands, impurity bands, and free carrier absorption. The first two of these, which have been explored with high resolution, are discussed in detail. Measurements of the absorption spectrum near the intrinsic edge in germanium and silicon show that indirect transitions take place, and that ‘excitons’ are formed; and the intrinsic energy gap can be deduced accurately. The lattice bands yield the main features of the lattice vibration spectrum.  相似文献   

16.
We observe signatures of stimulated bosonic scattering of excitons, a precursor of Bose-Einstein-Condensation (BEC), in the photoluminescence of semiconductor quantum wells. The optical decay of a spinless molecule of two excitons (biexciton) into an exciton and a photon with opposite angular momenta is subject to bosonic enhancement in the presence of other excitons. In a gas of biexcitons and spin polarized excitons the bosonic enhancement breaks the symmetry of two equivalent biexciton decay channels leading to circularly polarized luminescence of the biexciton with the sign opposite to the circularly polarized exciton luminescence. Comparison of experiment and many body theory clearly indicates the existence of stimulated exciton-scattering, but excludes the presence of a fully condensed BEC-like state.  相似文献   

17.
半导体量子点的激子超辐射出现的条件是本文激子超辐射的理论研究中的重点,我们的理论推导结果揭示要观测到半导体量子点的激子超辐射必须采用短于百飞秒的激发源。我们用ZnO单量子点观察到激子超辐射,同时测量和分析讨论了量子点集合的相干辐射性质,发现单量子点超辐射的二次方泵浦与辐射强度关系被大量量子点间的线性递增所掩盖。  相似文献   

18.
We report on the electrical and optical characteristics of silicon light-emitting pn diodes. The diodes are prepared by ion implantation of boron at high doses and subsequent high-temperature annealing. Under forward bias, the diodes emit infrared electroluminescence closely below the band gap of bulk Si. We present a rate-equation model for bound excitons, free excitons and free carriers which successfully describes the electrical and optical behaviour of the diodes at low temperatures. Especially, an electrical bistability observed below 50 K is shown to be based on the interplay of bound excitons, free excitons and free carriers in the active area of the diodes. The ionisation of bound excitons is the origin of an improved electroluminescence from the diodes at higher lattice temperatures. PACS 78.60.Fi; 78.55.Ap; 71.35.-y; 71.55.Cn  相似文献   

19.
纳米结构ZnO晶体薄膜室温紫外激光发射   总被引:4,自引:0,他引:4  
汤子康 《物理》2005,34(1):21-30
文章综述了纳米结构的氧化锌半导体薄膜在室温下自由激子的自发辐射以及由自由激子引起的受激发射的特性,阐述了在不同激发密度下室温紫外受激发射的机理.纳米结构氧化锌半导体薄膜是用激光分子束外延(L-MBE)技术生长在蓝宝石衬底上的.薄膜由密集而规则排列的纳米尺度的六角柱组成.这些纳米六角柱起着限制激子运动的作用,激子的量子尺寸效应,使激子的跃迁振子强度大幅度增强.同时六角柱之间的晶面组成了一个天然的激光谐振腔.室温下用三倍频的YAG脉冲激光激发,可从这些纳米结构的氧化锌薄膜中观测到很强的紫外激光发射.研究发现,在中等激发密度下,紫外受激发射是由于激子与激子间碰撞而引起的辐射复合.在高密度激发条件下,由于激子趋于离化,紫外受激发射主要由电子-空穴等离子体的辐射复合引起.由于纳米结构中激子的跃迁振子增强效应,在室温下测量到的光学增益高达320cm^-1,这比在同样条件下测量到的块状氧化锌晶体的光学增益要高一个量级以上.与传统的电子-空穴等离子体激光辐射相比,激子引起的受激发射可在较低的激发密度条件下实现.这在实际应用上很有价值.  相似文献   

20.
自旋是基本粒子(电子、光子)角动量的内在形式.固体中体现自旋特征的集体电子行为如拓扑绝缘体等是当前凝聚态物理领域关注的焦点,是基态行为.激子作为电子空穴对的激发态且寿命很短,可复合发光,它是否能体现自旋极化主导的行为?对此人们的认识远不如针对基态的电子.激子磁极化子(exciton magnetic polaron,EMP)是由磁性半导体微结构中铁磁自旋耦合态与自由激子相互作用形成的复合元激发,但其研究很有限.本文概述了我们在稀磁半导体微纳米结构中的EMP及其发光动态学光谱、自旋极化激子凝聚态的形成方面取得的一些进展,展望了未来可能在自旋光电子器件、磁控激光、光致磁性等量子技术方面的潜在应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号