首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the full potential linearized augmented plane wave (FLAPW) method, thickness dependent magnetic anisotropy of ultrathin FeCo alloy films in the range of 1 monolayer (ML) to 5 ML coverage on Pd(0 0 1) surface has been explored. We have found that the FeCo alloy films have close to half metallic state and well-known surface enhancement in thin film magnetism is observed in Fe atom, whereas the Co has rather stable magnetic moment. However, the largest magnetic moment in Fe and Co is found at 1 ML thickness. Interestingly, it has been observed that the interface magnetic moments of Fe and Co are almost the same as those of surface elements. The similar trend exists in orbital magnetic moment. This indicates that the strong hybridization between interface FeCo alloy and Pd gives rise to the large magnetic moment. Theoretically calculated magnetic anisotropy shows that the 1 ML FeCo alloy has in-plane magnetization, but the spin reorientation transition (SRT) from in-plane to perpendicular magnetization is observed above 2 ML thickness with huge magnetic anisotropy energy. The maximum magnetic anisotropy energy for perpendicular magnetization is as large as 0.3 meV/atom at 3 ML film thickness with saturation magnetization of . Besides, the calculated X-ray magnetic circular dichroism (XMCD) has been presented.  相似文献   

2.
We report here on resistance and magnetoresistance (MR) studies of ultrathin Co/Au(111) single sandwiches and bilayers with perpendicular magnetization. Resistance of the films was measured in situ in ultrahigh vacuum, during depositions and as a function of a perpendicular applied magnetic field. A large MR variation with the thickness of Au coverage was observed and compared to calculations. The coercive field of the Co films shows a drastic variation with the Au coverage thickness, which reflects the theoretical anisotropy variation. It was measured as a function of temperature. For the first time, the effect of interlayer interaction on the resistivity of a Co bilayer during the growth of Co top layer, is evidenced and compared to calculations. Finally, hysteresis loops of strongly antiferromagnetically coupled bilayers are investigated. Received 3 November 1998 and Received in final form 18 January 1999  相似文献   

3.
We present a study of the magnetization reversal dynamics in ultrathin Au/Co/Au films with perpendicular magnetic anisotropy, for a Co thickness of 0.5, 0.7 and 1 nm. In these films, the magnetization reversal is dominated by domain nucleation for tCo=0.5, 0.7 nm and by domain wall propagation for tCo=1 nm. The prevalence of domain nucleation for the thickness range 0.5-0.7 nm is different from results reported in the literature, for the same system and for the same thickness range, where the magnetization reversal took place mainly by domain wall motion. We attribute this difference to the effect of roughness of the Au buffer layer on the morphology of the magnetic layer.  相似文献   

4.
We describe magneto-optic Kerr effect studies of ultrathin Fe and Ni films on single crystal surfaces of Ag and Cu. Monolayer Fe films on Ag(100) exhibit the theoretically predicted spin-orbit anisotropy, but also yield some interesting discrepancies between behavior predicted by Kerr effect and by spin-polarized photoemission experiments. Layer-dependent studies of the magnetic moment of Ni on Ag(111) and Ag(100) suggest sp-d hybridization effects quench the first layer magnetic moment on Ag(111) but not on Ag(100). Temperature dependent studies of thin film magnetization obtained from Kerr effect measurements yield thickness dependent Curie temperatures, and critical exponents for several thin film systems.  相似文献   

5.
Nickel allows to study the largest variety of phenomena in the magnetism of UHV ultrathin films. The low critical temperature of 630 K for the bulk favors experiments from 0 K to aboveT c and from one monolayer to infinite thick films. The thickness dependence ofT c (d) for the (001) and the (111) orientation is compared. Susceptibility measurements in UHV are presented, and from max the film geometry can be deduced. Ferromagnetic resonance measures the second- and fourth-order anisotropy constants. These give a clear understanding of when and how the reorientation transition from the in-plane to the perpendicular orientation occurs and its nature. Magnetic resonance and circular X-ray dichroism measure the spin and orbital parts of the magnetic moment µ, its anisotropy µ, and the 3d and 4sp contributions. Finally, we show how a 4 Monolayer (ML) Ni(001) film can be transformed into NiO by controlled oxygen dosage and thermal treatment.Paper presented at the annual Spring Meeting of the Deutsche Physikalische Gesellschaft for Condensed- Matter Division, Berlin, Germany. 20–24 March, 1995  相似文献   

6.
Ultrathin films, bcc Fe(001) on Ag(001), fcc Fe(001) on Cu(001) and Fe/Ni(001) bilayers on Ag, were grown by molecular beam epitaxy. A wide range of surface science tools were employed to establish the quality of epitaxial growth. Ferromagnetic resonance and Brillouin light scattering were used to extract the magnetic properties. Emphasis was placed on the study of magnetic anisotropies. Large uniaxial anisotropies with easy axis perpendicular to the film surface were observed in all ultrathin structures studied. These anisotropies were particularly strong in fcc Fe and bcc Fe films. In sufficiently thin samples the saturation magnetization was oriented perpendicularly to the film surface in the absence of an applied field. It has been demonstrated that in bcc Fe films the uniaxial perpendicular anisotropy originates at the film interfaces. In situ measurements indentified the strength of the uniaxial perpendicular anisotropy constant at the Fe/vacuum, Fe/Ag and Fe/Au interfaces asK us = 0.96, 0.63, and 0.3 ergs/cm2 respectively. The surface anisotropies deduced for [bulk Fe/noble metal] interfaces are in good agreement with the values obtained from ultrathin films. Hence the perpendicular surface ansiotropies originate in the broken symmetry at abrupt interfaces. An observed decrease in the cubic anisotropy in bcc Fe ultrathin films has been explained by the presence of a weak 4th order in-plane surface anisotropy,K 1S=0.012 ergs/cm2. Fe/Ni bilayers were also investigated. Ni grew in the pure bcc structure for the first 3–6 ML and then transformed to a new structure which exhibited unique magnetic properties. Transformed ultrathin bilayers possessed large inplane 4th order anisotropies far surpassing those observed in bulk Fe and Ni. The large 4th order anisotropies originate in crystallographic defects formed during the Ni lattice transformation.  相似文献   

7.
A previously introduced formalism for calculating magnetic dipolar anisotropy energy ΔU in atomic layered structures is further developed. Numerical results are presented for ultrathin films with different close-packed (face centered cubic (FCC) [1 1 1]) and non-close-packed (FCC [0 0 1] and body centered cubic (BCC) [0 0 1]) structures. Structural effects become apparent in the magnetocrystalline dipolar anisotropy energy ΔUL when the ratio between the interlayer separation c and the 2D lattice constant a is changed. Despite the long-range character of the dipolar interaction, it is shown that the number of significantly interacting layers, conventially called coupled layers, is limited and depends on the structural aspect ratio c/a. The slope in the observed linear dependence between ΔUL and the inverse of the film thickness t is explained by the number of the so-called coupled layers, and not by a surface contribution to volume values. Size effects appearing in ΔU are unambiguously distinguished from structural effects. Effective anisotropy energy ΔUeff and ΔU are presented for Co [0 0 0 1] and Ni [0 0 1] ultrathin films. It is verified that the dipolar interaction makes an important contribution to ΔUeff, but the spin reorientation transition is determined by non-dipolar interactions. The former favors the magnetization switching only when the size aspect ratio d/t, with d the characteristic lateral dimension of the film, is sufficiently small. Applications to other layered arrays of magnetic dipoles are straightforward.  相似文献   

8.
The magnetic anisotropy energy (MAE) of 3d transition-metal wires, stripes, and films is calculated self-consistently as a function of stripe width and film thickness. The magnetization-reorientation transitions in stripes are determined along the crossover from the mono-atomic one-dimensional chain to the two-dimensional monolayer. It is shown that the MAE oscillates as a function of stripe width and depends strongly on the considered transition metal. The reorientation transitions in Co films deposited on a highly polarizable substrate such as Pd are discussed. A local analysis of the layer-resolved MAEs provides new insights into the off-plane magnetization observed in Pd-capped Co films on Pd(111). The interfaces responsible for the stability of the off-plane easy axis are characterized microscopically. An unexpected internal magnetic structure of the Co–Pd interfaces is revealed in which the magnetic moments and spin–orbit interactions at Pd atoms play a crucial role. The nature of the reorientation transition from perpendicular to in-plane magnetization with increasing film thickness is studied by means of full-vectorial calculations. The existence of a spin-canted phase at intermediate film thickness is demonstrated.  相似文献   

9.
We determine the minimal domain structure for the equilibrium thickness of stripes as well as for the minimal energy of the domain configuration in ultrathin films of ferromagnetically coupled spins, where the easy direction of magnetization is perpendicular to the film. It is found that the equilibrium thickness of stripes and walls depend on the exchange energy. The normalized anisotropy, f, depends on interplay between the magnetic and anisotropy energies and is almost independent of the exchange energy inside the wall. The results are compared with the experimental data for thin Ag/Fe/Ag (0 0 1) films and a good coincidence is obtained between both results.  相似文献   

10.
Application of conversion electron Mössbauer spectroscopy (CEMS) to structural and magnetic analysis of ultrathin films and their interfaces is reviewed. Fe(110) films were prepared on W(110) under UHV conditions and analyzed in situ. CEMS provides detailed information on the mode of growth and film structure and on magnetic hyperfine fields, B hf. Local structure of B hf across the film is discussed in relation to modifications of magnetic order caused by the finite (including monolayer) film thickness and by the electronic structure of the interface.  相似文献   

11.
Magnetic bubble films exhibit a number of ferrimagnetic resonance modes due to the spatial variation of the anisotropy. The resonance frequencies have been measured as a function of the applied bias fieldH 0. In the lower field range the magnetization of the transient layer, which has negative anisotropy, is not yet parallel toH 0. In this range the resonance frequencies are shifted to higher values due to pinning effects. In films grown by the vertical dipping method an additional layer on top of the transient layer is observed within which the magnetization rotates from the direction in the transient layer to that of the bulk of the film. In films grown by horizontal dipping no such layer could be detected. Each ferrimagnetic resonance mode excites transverse elastic waves in the film due to the magnetoelastic interaction and thus gives rise to elastic resonances of the whole crystal, film and substrate. These elastic resonances lead to a fine-structure of the ferrimagnetic resonances. The observed fine-structure vanishes periodically with frequency and from this behaviour the thickness of the magnetic film and of the transient layer has been determined.  相似文献   

12.
The spin wave excitation and its size effect has been studied in Al-capped Fe films grown on low-symmetry GaAs(1 1 3)A substrates. The temperature dependence of saturation magnetization follows an effective Bloch's law as long as magnetization remains larger than about 70% of its saturation value. A significant increase of the spin wave parameter B is found in Al-capped ultrathin Fe films grown on GaAs(1 1 3)A compared to bulk Fe, Fe films on GaAs(0 0 1) and other systems. This is explained as a result of the reduction in uniaxial magnetic anisotropy observed in this orientation for the same thickness range. However, this observed uniaxial magnetic anisotropy is found to be a likely reason for stabilizing the ferromagnetism.  相似文献   

13.
The in-plane magnetic anisotropy of Fe/NiO bilayers was studied quantitatively as a function of NiO thickness using the magneto-optical Kerr effect with a rotating field. For NiO thicker than the ordering transition thickness, the total in-plane fourfold anisotropy of the Fe layer decreases with NiO thickness in Fe/NiO/Au(001), but increases in Fe/NiO/MgO(001). Our result indicates that the exchange coupling in an Fe/NiO bilayer might induce an additional in-plane fourfold anisotropy, and the opposite thickness dependent behaviors may be attributed to the different Ni2+ antiferromagnetic spin orientations for NiO films grown on Au(001) and MgO(001) surfaces.  相似文献   

14.
15.
The spin polarizationP of the low energy cascade electrons excited with a primary unpolarized electron beam is measured with ultrathin films of permalloy (Ni80Fe20) as a function of film thickness, external magnetic field, and temperatureT. Surface adsorbates of small concentrations of less than 10% of a monolayer can change the Curie point and the saturation value ofP 0(T0) by as much as 30%. The Ta-substrate induces a magnetically dead region in permalloy. Conventional spin wave theory cannot account for the observed smallT-dependence of the magnetizationM. Films on a nonmagnetic substrate are compared to similar films coupled to bulk permalloy over an interface of Ta. TheT-dependence ofM with the coupled films can be explained by spin wave theory. At lowT, the films coupled to the bulk exhibit a faster decrease ofM than the uncoupled films. We propose that this thermal stabilization of the magnetization in very thin ferromagnetic films is due to quenching of the long wavelength spin modes.  相似文献   

16.
We studied the interface electronic and magnetic properties of Fe/Co deposited on Au substrate and researched the effects of roughness at the interfaces within augmented space formalism(ASF). The full calculation is carried out by recursion and tight-binding linear muffin tin orbital(TB-LMTO) methods. The amount of roughness is different at different atomic layers. The formalism is also applied to sharp interface, when interdiffusion of atoms is negligible. Our results of one monolayer transition metal agree with other reported results. A realistic rough interface is also modeled with three and four monolayers of transition metals, deposited on Au substrates.  相似文献   

17.
We report results of systematic calculations for magnetic properties of 3d transition metal monolayers on Pd(001) and Ag(001). We find large similarities to interactions of magnetic 3d impurities in the bulk. Therefore the overlayer results are supplemented with results for 3d dimers in Cu, Ag, and Pd. Differences between the two classes of systems are utilized to reveal the interaction within the overlayers and between overlayers and substrates. In virtually all cases we find both ferromagnetic and antiferromagnetic solutions, showing large magnetic moments and similar densities of states. From the trend of the calculations we conclude that V, Cr, and Mn overlayers favor the antiferromagnetic c(2×2) structure, while Ti, Fe, Co, and Ni prefer the ferromagnetic one.  相似文献   

18.
Surface damage produced by single MeV-GeV heavy ions impacting ultrathin polymer films has been shown to be weaker than those observed under bulk (thick film) conditions. The decrease in damage efficiency has been attributed to the suppression of long-range effects arising from excited atoms lying deeply in the solid. This raises the possibility that the substrate of the films itself is relevant to the radiation effects seen at the top surface. Here, the role of the substrate on cratering induced by individual 1.1 GeV Au ions in ultrathin poly(methyl methacrylate) (PMMA) layers is investigated. Materials of different thermal and electrical properties (Si, SiO2, and Au) are used as substrates to deposit PMMA thin films of various thicknesses from ∼1 to ∼300 nm. We show that in films thinner than ∼40 nm craters are modulated by the underlying substrate to a degree that depends on the transport properties of the medium. Crater size in ultrathin films deposited on the insulating SiO2 is larger than in similar films deposited on the conducting Au layer. This is consistent with an inefficient coupling of the electronic excitation energy to the atomic cores in metals. On the other hand, the damage on films deposited on SiO2 is not very different from the Si substrate with a native oxide layer, suggesting, in addition, poor energy transmission across the film/substrate interface. The experimental observations are also compared to calculations from an analytical model based on energy addition and transport from the excited ion track, which describe only partially the results.  相似文献   

19.
The optical and magneto-optical second harmonic reflectivity response of Au/Co/Au/Cu multilayers grown on vicinal Si (111) substrates has been studied. These azimuthal optical non-linear experiments check the uniaxial character of the crystallinity of the Au buffer layer and the magnetic behavior of the ultrathin Co films in the metallic multilayer. They clearly show the strong dependence of the growth parameters and the misorientation of the vicinal surface on the SHG reflectivity signals. This uniaxial behavior is also correlated to linear MOKE experiments on the magnetic anisotropy with an easy magnetization axis parallel to the step edges. Received: 16 October 2001 / Published online: 29 May 2002  相似文献   

20.
We employ superconducting quantum interference device magnetometry to study the thickness dependence of in-plane and out-of-plane magnetic anisotropic properties of Fe films grown on high-index GaAs(113)A substrates by molecular beam epitaxy. The evolution of the in-plane magnetic anisotropy with film thickness is distinguished into two regions. First, for Fe film thicknesses ≤50 MLs, we observe an in-plane uniaxial magnetic anisotropy with the easy axis along the in-plane 〈332̄〉 axes. Second, for Fe film thicknesses ≥70 MLs, we observe a four-fold magnetic anisotropy with the easy axis along the in-plane 〈031̄〉 axes. The existence of an out-of-plane perpendicular magnetic anisotropy is also detected in ultrathin Fe films. Similar to Fe on GaAs(001), our results provide evidence for the interfacial origin of the in-plane uniaxial and out-of-plane perpendicular magnetic anisotropy. Both the uniaxial and the perpendicular interface anisotropy are found to be independent of the epitaxial orientation and are hence an intrinsic property of the Fe/GaAs interface. PACS 75.70.-i; 75.50.Bb; 81.15.Hi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号