首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental isothermal (vapour + liquid) equilibrium (VLE) data are reported for the binary mixture containing 1-butyl-3-methylimidazolium iodide ([bmim]I) + 1-butanol at three temperatures: (353.15, 363.15, and 373.15) K, in the range of 0 to 0.22 liquid mole fraction of [bmim]I. Additionally, refractive index measurements have been performed at three temperatures: (293.15, 298.15 and 308.15) K in the whole composition range. Densities, excess molar volumes, surface tensions and surface tension deviations of the binary mixture were predicted by Lorenz–Lorentz (nD-ρ) mixing rule. Dielectric permittivities and their deviations were evaluated by known equations. (Vapour + liquid) equilibrium data were correlated with Wilson thermodynamic model while refractive index data with the 3-parameters Redlich–Kister equation by means of maximum likelihood method. For the VLE data, the real vapour phase behaviour by virial equation of state was considered. The studied mixture presents S-shaped abatement from the ideality. Refractive index deviations, surface tension deviations and dielectric permittivity deviations are positive, while excess molar volumes are negative at all temperatures and on whole composition range. The VLE data may be used in separation processes design, and the thermophysical properties as key parameters in specific applications.  相似文献   

2.
Densities, viscosities, and refractive indices of the ternary mixture consist of {2-methyl-2-butanol (1) + tetrahydrofuran (THF) (2) + propylamine (3)} at a temperature of 298.15 K and related binary mixtures were measured at temperatures of (288.15, 298.15, and 308.15) K at ambient pressure. Data were used to calculate the excess molar volumes and the deviations of the viscosity and refractive index. The Redlich–Kister and the Cibulka equations were used for correlating binary and ternary properties, respectively. The ERAS-model has been applied for describing the binary and ternary excess molar volumes and also Peng–Robinson–Stryjek–Vera (PRSV) equation of state (EOS) has been used to predict the binary and ternary excess molar volumes and viscosities.  相似文献   

3.
Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model.  相似文献   

4.
This paper reports the results of a new experimental study of thermophysical properties for the ternary mixture of {diethyl carbonate + p-xylene + decane}. Surface tension has been measured at 298.15 K and, density and speed of sound have been measured in the temperature range T = (288.15 to 308.15) K. Excess molar volumes, excess isentropic compressibilities, and surface tension deviations, have been calculated from experimental data. Surface tension deviations have been correlated with Cibulka equation and Nagata and Tamura equation was used for the other excess properties. Good accuracy has been obtained. These excess magnitudes are discussed qualitatively in terms of the nature and type of intermolecular interactions of the components involved.  相似文献   

5.
New solubility and liquid–liquid equilibrium (LLE) data of solutions of (water + ethanol + α,α,α-trifluorotoluene) are determined at three temperatures (288.15, 298.15, and 308.15) K and atmospheric pressure. The solubility and LLE data are correlated quantitatively by empirical equations, NRTL, and UNIQUAC models. The effect of temperature upon miscibility of the ternary systems is small. Practically, α,α,α-trifluorotoluene is capable to extract efficiently ethanol from its dilute aqueous solutions to obtain absolute alcohol.  相似文献   

6.
《Fluid Phase Equilibria》2006,245(1):32-36
New experimental densities and surface tensions for n-nonane + 1-hexanol at 288.15, 298.15 and 308.15 K are reported. Densities were measured with an Anton Paar DMA 4500 densimeter, and surface tensions using a Lauda TVT2 automated tensiometer, which uses the principle of the pending drop volume. The experimental data of pure liquids and mixtures have been used to calculate excess molar volumes and surface tension deviations of n-nonane + 1-hexanol as a function of mole fractions. A comparative study of these properties together with those available in the literature for the n-alkane + 1-alkanol mixtures has been performed. In addition, the magnitude of these experimental quantities is discussed in terms of the nature and type of intermolecular interactions in binary mixtures.  相似文献   

7.
This study demonstrates the course of solubility and (liquid + liquid) equilibrium (LLE) for the system (cyclohexane + 1-butanol + 2,2,2-trifluoroethanol) at temperatures of (288.15, 298.15, and 308.15) K and pressure 101.3 kPa. The titration method was used to assess solubility (binodal) curves, while a direct analytical method to acquire tie lines.The consistency of the binodal curves and phase diagrams data were well calculated by Hand and Othmer–Tobias empirical equations. The NRTL and UNIQUAC thermodynamic models gave accurate tie-line values for the systems. Plait-point, distribution coefficient, solvent selectivity, and NRTL and UNIQUAC binary interaction parameters were obtained.The immiscibility region of the system decreases significantly with increasing temperature. The results present an overview of the high efficiency of liquid extraction using 2,2,2-trifluoroethanol as solvent to yield pure cyclohexane from its 1-butanol azeotrope mixture at ambient temperatures.  相似文献   

8.
Isothermal (vapour + liquid) equilibrium data for the ternary mixtures 1-butanol + n-hexane + 1-chlorobutane and 2-butanol + n-hexane + 1-chlorobutane have been studied with a recirculating still at T = 298.15 K. The experimental data were satisfactorily checked for thermodynamic consistency using the method of van Ness. Activity coefficients and excess Gibbs function have been correlated with the Wilson equation. The GE values obtained for the two ternary systems are very similar.  相似文献   

9.
The density and speed of sound of the ternary mixture (diethyl carbonate + p-xylene + octane) have been measured at atmospheric pressure and in the temperature range T = (288.15 to 308.15) K. Besides, surface tension has been also determined for the same mixture at T = 298.15 K. The experimental measurements have allowed the calculation of the corresponding derived properties: excess molar volumes, excess isentropic compressibilities, and surface tension deviations. Excess properties have been correlated using Nagata and Tamura equation and correlation for the surface tension deviation has been done with the Cibulka equation. Good accuracy has been obtained. Based on the variations of the derived properties values with composition, a qualitative discussion about the intermolecular interactions was drawn.  相似文献   

10.
Densities and speeds of sound have been determined for the binary mixtures containing an ionic liquid (1-butyl-3-methylpyridinium tetrafluoroborate or 1-butyl-4-methylpyridinium tetrafluoroborate) and an alkanol (methanol or ethanol) over the temperature range (293.15 to 323.15) K. Excess volumes and excess isentropic compressibilities have been calculated from density and speed of sound data and correlated. All the mixtures show negative values for these excess properties. Furthermore, the isothermal (vapour + liquid) equilibrium has been measured at T = (303.15 and 323.15) K, and the corresponding activity coefficients and excess Gibbs functions have been obtained. In this case, positive excess Gibbs functions have been found. We have carried out an exhaustive interpretation of the experimental results in terms of structural and energetic effects taking also into account the thermodynamic information of pure compounds. Finally, in order to study the influence of both, the presence and the position of methyl group in the cation, we have compared the results of these systems with those obtained for the mixtures formed by 1-butylpyridinium tetrafluoroborate and methanol or ethanol.  相似文献   

11.
Isobaric (vapour + liquid) equilibrium measurements have been reported for the binary mixture of (1-pentanol + propionic acid) at (53.3 and 91.3) kPa. Liquid phase activity coefficients were calculated from the equilibrium data. The thermodynamic consistency of the experimental results was checked using the area test and direct test methods. According to these criteria, the measured (vapour + liquid) equilibrium results were found to be consistent thermodynamically. The obtained results showed a maximum boiling temperature azeotrope at both pressures studied. The measured equilibrium results were satisfactorily correlated by the models of Wilson, UNIQUAC, and NRTL activity coefficients. The results obtained indicate that the performance of the NRTL model is superior to the Wilson and UNIQUAC models for correlating the measured isobaric (vapour + liquid) equilibrium data.  相似文献   

12.
《Fluid Phase Equilibria》2006,245(2):89-101
New experimental data are reported for the thermodynamic investigation of the intermolecular and intra-molecular hydrogen bonding in 2-ethoxyethanol + hydrocarbons. The excess enthalpies of the mixtures of 2-ethoxyethanol + n-hexane, or cyclohexane, or benzene, or n-octane at three temperatures (298.15, 308.15, and 318.15 K) were measured. The data are correlated with the statistical thermodynamic model non-random hydrogen bonding (NRHB) which accounts for both types of hydrogen bonds and was recently developed by the authors. A single set of hydrogen bonding parameters is used for all the alkoxyethanol systems and for the recently calculated thermodynamic properties. The results showed a satisfactory agreement between experimental and calculated data and the contributions of all different types of molecular interactions were calculated. The intra-molecular hydrogen bonding contribution to the heats of mixing is exothermic and significant. The calorimetric measurements are combined with dielectric ones and the derived Kirkwood factor is used to interpret the physicochemical behaviour of our systems.  相似文献   

13.
Density, speed of sound and refractive index values of (diethyl carbonate  + n -decane), were measured at the temperatures (288.15, 293.15, 298.15, and 308.15) K and atmospheric pressure. In addition, dielectric permittivities have been measured for the same mixture and at the same temperatures except at T =  293.15 K. Excess molar volumes, changes of isentropic compressibility on mixing, changes of refractive index on mixing and changes of dielectric permittivity on mixing were computed from the experimental data. The excess molar volumes were compared with predictions from the Nitta–Chao model.  相似文献   

14.
In this work, isobaric (vapour + liquid) equilibrium data have been determined at (53.3 and 91.3) kPa for the binary mixtures of (1-propanol + 1-butanol). The thermodynamic consistency of the experimental values was checked by means the traditional area test and the direct test methods. According to the criteria for the test methods, the (vapour + liquid) equilibrium results were found to be thermodynamically consistent. The experimental values obtained were correlated by using the van Laar, Margules, Wilson, NRTL, and UNIQUAC activity-coefficient models. The binary interaction parameters of the activity-coefficient models have been determined and reported. They have been compared with those calculated by the activity-coefficient models. The average absolute deviation in boiling point and vapour-phase composition were determined. The calculated maximum average absolute deviations were 0.86 K and 0.0151 for the boiling point and vapour-phase composition, respectively. Therefore, it was shown that the activity-coefficient models used satisfactorily correlate the (vapour + liquid) equilibrium results of the mixture studied. However, the performance of the UNIQUAC model was superior to all other models mentioned.  相似文献   

15.
The (vapour + liquid) equilibrium (VLE) and boiling temperature measurements have been determined at 95.3 kPa as a function of composition for the binary liquid mixtures of N-methyl-2-pyrrolidone (NMP) with branched alcohols using a Swietoslawski-ebulliometer. The branched alcohols include 2-propanol, 2-butanol, 2-methyl-l- propanol, 2-methyl-2-propanol, and 3-methyl-l-butanol. The experimental temperature-composition (Tx) results were used to estimate Wilson parameters and then used to calculate the equilibrium vapour compositions and the excess Gibbs free energy at T = 298.15 K. The experimental temperature-composition (T, x) results were correlated with the Wilson, the NRTL and the UNIQUAC models. The experimental results are interpreted in terms of intermolecular interactions between constituent molecules.  相似文献   

16.
Phase diagram and (liquid + liquid) equilibrium (LLE) results for {NaClO4 + polyethylene glycol 4000 (PEG 4000) + H2O} have been determined experimentally at T = (288.15, 298.15, and 308.15) K. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the values for the experimental tie-lines. The results show that the quality of fitting is better with the modified Wilson model.  相似文献   

17.
Density, speed of sound, and refractive index for the binary systems (butanoic acid + propanoic acid, or 2-methyl-propanoic acid) were measured over the whole composition range and at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. The excess molar volumes, isentropic compressibilities, excess isentropic compressibilities, molar refractions, and deviation in refractive indices were also calculated by using the experimental densities, speed of sound, and refractive indices data, respectively. The Redlich–Kister smoothing polynomial equation was used to fit the excess molar volume, excess isentropic compressibility and deviation in refractive index data. The thermodynamic properties have been discussed in terms of intermolecular interactions between the components of the mixtures.  相似文献   

18.
Densities (ρ) for binary systems of (1,2,4-trimethylbenzene, or 1,3,5-trimethylbenzene + propyl acetate, or butyl acetate) were determined at four temperatures (298.15, 303.15, 308.15, and 313.15) K over the full mole fraction range. The excess molar volumes (VE) calculated from the density data show that the deviations from ideal behaviour in the systems (all being positive, excepting 1,2,4-trimethylbenzene + butyl acetate system) become more positive with the temperature increasing. Surface tensions (σ) of these binary systems were measured at the same temperatures (298.15, 303.15, 308.15, and 313.15) K by the pendant drop method, the surface tension deviations (δσ) for all system are negative, and decrease with the temperature increasing. The VE and δσ are fitted to the Redlich–Kister polynomial equation. Surface tensions were also used to estimate surface entropy (Sσ) and surface enthalpy (Hσ).  相似文献   

19.
(Ternary liquid + liquid) equilibria (tie-lines) of (water + acetone + α-pinene) at T = (288.15, 298.15, and 308.15) K and (water + acetone + β-pinene, or limonene) at T = 298.15 K have been measured. The experimental (ternary liquid + liquid) equilibrium data have been correlated successfully by the original UNIQUAC and modified UNIQUAC models. The modified UNIQUAC model reproduced accurately the experimental results for the (water + acetone + α-pinene) system at all the temperatures but fairly agreed with the experimental data for the (water + acetone + β-pinene, or limonene) systems.  相似文献   

20.
Experimental (liquid + liquid) equilibrium (LLE) data were determined for a ternary system (polyvinylpyrrolidone + MgSO4 + water) at various temperatures of (298.15, 303.15, and 308.15) K. The UNIQAC, modified regular solution, modified Wilson and Chen-NRTL models were used to correlate the experimental tie-line data. The results show that at each temperature, the quality of fitting is better with the Chen-NRTL model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号