首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
2.
For a better understanding on the functions of DMSO in biological systems at a relatively lower concentration, apparent molar volumes of three typical amino acids, glycine, l-alanine and l-serine in (DMSO + water) mixtures were determined and the transfer volumes from water to the mixtures were evaluated. Together with static light scattering measurement, the results were utilised to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrate that the interaction between amino acids and DMSO is greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. The linear dependence of transfer volume of amino acids on DMSO concentration up to 2.0 mol  dm−3 could be attributed to the increasing interaction with (DMSO)1(H2O)n clusters. The formation of (DMSO)m(H2O)n cluster via hydrophobic aggregating at higher DMSO concentration led to a decrease in hydrophobic effect of DMSO and its hydrophobic–hydrophilic and hydrophobic–hydrophobic interaction with amino acids. The structure change of solvent and the interaction between amino acid residues and DMSO was reflected by the solvation of proteins. It was found that dependence of hydrodynamic radius of bovine serum albumin and lysozyme on DMSO concentration was the same and similar to that of static light scattered by the mixed solvent, regardless of the difference in conformational change between the two proteins.  相似文献   

3.
A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A2[(UO2)2(MoO4)O2], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K2[(UO2)2(MoO4)O2] was determined using HF-solution calorimetry giving ΔfH° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = −(4018 ± 8) kJ · mol−1. The low-temperature heat capacity, Ср°, was measured using adiabatic calorimetry from T = (7 to 335) K for K2[(UO2)2(MoO4)O2] and from T = (7 to 326) K for Rb2[(UO2)2(MoO4)O2]. Using these Ср° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K−1 · mol−1 for K2[(UO2)2(MoO4)O2] and (390 ± 1) J · K−1 · mol−1 for Rb2[(UO2)2(MoO4)O2]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, ΔfG°, for both phases giving: ΔfG° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = (−3747 ± 8) kJ · mol−1 and ΔfG° (T = 298 K, Rb2[(UO2)2(MoO4)], cr) = −3736 ± 5 kJ · mol−1. Smoothed Ср°(Т) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T)  H°(0)] and [G°(T)  H°(0)], for both phases. The stability behaviour of various solid phases and solution complexes in the (K2MoO4 + UO3 + H2O) system with and without CO2 at T = 298 K was investigated by thermodynamic model calculations using the Gibbs energy minimisation approach.  相似文献   

4.
The standard potential of the (Ag, AgCl) electrode Eo, the standard second ionization constant of sulfuric acid K2, and the standard association constant of the ion pair [MgSO4]o, K in {0.03226CO(NH2)2 +  0.96774 H2O } at five temperatures from 278.15 K to 318.15 K were determined from precise e.m.f. measurements of different cells without liquid junction. The dependence of p K on temperature T is expressed by the empirical equation pK =  6.617    777.9 · (K / T)    0.02001 · (T / K). The other thermodynamic functions of the association process were also calculated and show that the driving force for the process is the entropy of association.  相似文献   

5.
N. Xaba  D. Jaganyi 《Polyhedron》2009,28(6):1145-1149
Hydroboration reactions of 4-octene with HBBr2 · SMe2, HBCl2 · SMe2 and H2BBr · SMe2 in CH2Cl2 were studied as function of concentration and temperature and compared with those of 1-octene. On average, hydroboration with dihaloborane proceeded 16 times slower for 4-octene than for 1-octene. In the case of the reactions with the monohaloborane, this factor is halved. This can be explained by the difference in the relative rates of dissociates of Me2S from the dihaloborane and a monohaloborane complex, respectively. The reactions involving H2BBr · SMe2 also exhibited a k?2 value, an indication of the presence of a parallel reaction, most likely a rearrangement process facilitating isomerization by way of a π-complex. The moderate ΔH values accompanied by small ΔS values (94 ± 4 kJ mol?1, ?3 ± 13 J K?1 mol?1 for HBBr2 · SMe2; 93 ± 1 kJ mol?1, ?17 ± 4 J K?1 mol?1 for HBCl2 · SMe2 and in the case of H2BBr · SMe2, 90 ± 13 kJ mol?1, +12 ± 44 J K?1 mol?1 and 83 ± 13 kJ mol?1, ?24 ± 45 J K?1 mol?1, respectively, for the k2 and k?2 processes) imply a process that is dissociatively dominated, with the overall mode of activation being interchange dissociative (Id).  相似文献   

6.
Binary mutual diffusion coefficients (interdiffusion coefficients) of nickel chloride in water at T = 298.15 K and T = 310.15 K, and at concentrations between (0.000 and 0.100) mol · dm?3, using a Taylor dispersion method have been measured. These data are discussed on the basis of the Onsager–Fuoss and Pikal models. The equivalent conductance at infinitesimal concentration of the nickel ion in these solutions at T = 310.15 K has been estimated using these results. Through the same technique, ternary mutual diffusion coefficients (D11, D22, D12, and D21) for aqueous solutions containing NiCl2 and lactose, at T = 298.15 K and T = 310.15 K, and at different carrier concentrations were also measured. These data permit us to have a better understanding of the structure of these systems and the thermodynamic behaviour of NiCl2 in different media.  相似文献   

7.
The thermodynamic properties ofZn5(OH)6(CO3)2 , hydrozincite, have been determined by performing solubility and d.s.c. measurements. The solubility constant in aqueous NaClO4media has been measured at temperatures ranging from 288.15 K to 338.15 K at constant ionic strength (I =  1.00 mol · kg  1). Additionally, the dependence of the solubility constant on the ionic strength has been investigated up to I =  3.00 mol · kg  1NaClO4at T =  298.15 K. The standard molar heat capacity Cp, mofunction fromT =  318.15 K to T =  418.15 K, as well as the heat of decomposition of hydrozincite, have been obtained from d.s.c. measurements. All experimental results have been simultaneously evaluated by means of the optimization routine of ChemSage yielding an internally consistent set of thermodynamic data (T =  298.15 K): solubility constant log * Kps 00 =  (9.0  ±  0.1), standard molar Gibbs energy of formationΔfGmo {Zn5(OH)6(CO3)2 }  =  (  3164.6  ±  3.0)kJ · mol  1, standard molar enthalpy of formation ΔfHmo{Zn5(OH)6(CO3)2 }  =  (  3584  ±  15)kJ · mol  1, standard molar entropy Smo{Zn5(OH)6(CO3)2 }  =  (436  ±  50)J · mol  1· K  1and Cp,mo / (J · mol  1· K  1)  =  (119  ±  11)  +  (0.834  ±  0.033)T / K. A three-dimensional predominance diagram is introduced which allows a comprehensive thermodynamic interpretation of phase relations in(Zn2 +  +  H2O  +  CO2) . The axes of this phase diagram correspond to the potential quantities: temperature, partial pressure of carbon dioxide and pH of the aqueous solution. Moreover, it is shown how the stoichiometric composition{n(CO3) / n(Zn)} of the solid compoundsZnCO3 and Zn5(OH)6(CO3)2can be checked by thermodynamically analysing the measured solubility data.  相似文献   

8.
The heat capacity of polycrystalline germanium disulfide α-GeS2 has been measured by relaxation calorimetry, adiabatic calorimetry, DSC and heat flux calorimetry from T = (2 to 1240) K. Values of the molar heat capacity, standard molar entropy and standard molar enthalpy are 66.191 J · K?1 · mol?1, 87.935 J · K?1 · mol?1 and 12.642 kJ · mol?1. The temperature of fusion and its enthalpy change are 1116 K and 23 kJ · mol?1, respectively. The thermodynamic functions of α-GeS2 were calculated over the range (0 ? T/K ? 1250).  相似文献   

9.
Calorimetric enthalpies of reaction have been measured for the overall biochemical reaction{pyrophosphate(aq)  +  H2O(l)  =  2phosphate (aq)} . The reaction was catalyzed by alkaline phosphatase and, to simplify the thermochemistry, was carried out in the absence of Mg 2 + (aq). Measurements were performed with phosphate buffer ( pH  =  7.19 and 7.94), PIPES buffer ( pH  =  7.13), and HEPES buffer ( pH  =  7.86). The results of these measurements were analyzed by using an equilibrium model. These calculations lead to the standard molar enthalpy changeΔrHmo =   (17.3  ±  0.6)kJ·mol  1 (temperature T =  298.15 K and ionic strengthI =  0) for the reference reaction{HP2O73  (aq)  +  H2O(l)  =  2HPO42  (aq)  +  H + (aq)} . Values of the apparent equilibrium constantK for the overall biochemical reaction from the literature were also analyzed by using the equilibrium model in order to obtain what is believed to be a reliable value for the equilibrium constantK =  4.7 · 10  4 for the reference reaction. The values ofK and ΔrHmo for the reference reaction have been used together with values from the CODATA tables to calculate standard molar formation properties for the pyrophosphate species.  相似文献   

10.
The temperature dependence of the rate constant of the inversion substitution reactions CH3X + O2 → CH3O2? + X? (X = SH, NO2), can be expressed as k = 6.8 × 10–12(T/1000)1.49exp(–62816 cal mol–1/RT) cm3 s–1 (X = SH) and k = 6.8 × 10–12(T/1000)1.26 × × exp(–61319 cal mol–1/RT) cm3 s–1 (X = NO2), as found with the use of high-level quantum chemical methods and the transition state theory.  相似文献   

11.
Excess molar volumes VmEof {di- n -butyl ether (DBE)  +  a monofunctional organic compound} have been determined atT =  298.15 K over the whole composition range by means of a vibrating-tube densimeter. TheVmE values were either positive (propylamine, or butylamine, or acetone, or tetrahydrofuran  +  DBE) or negative (methanol, or butanol, or diethyl ether, or cyclopentanone, or acetonitrile  +  DBE). Markedly asymmetric VmEcurves were displayed by (DBE  +  methanol) and (DBE  +  acetonitrile). Partial molar volumes __ Vmoat infinite dilution in DBE, both from this work and the literature, were analysed in terms of an additivity scheme, and the group contributions thus obtained were discussed and compared with analogous results in water. DBE revealed a greater capability of distinguishing between polar and non-polar solutes, as well as in discriminating differently shaped molecules (unbranched, branched, cyclic). The limiting slopes of apparent excess molar volumes are evaluated and briefly discussed in terms of solute–solute and solute–solvent interactions.  相似文献   

12.
Reactions of Be2+ and Mg2+ with O2– in molten eutectic mixture (CsCs + KCl + NaCl) (0.455:0.245:0.30) at T = 783 K were studied by a potentiometric method using Pt(O2)|ZrO2(Y2O3) indicator electrode. Addition of O2– ions to the melt containing Mg2+ results in precipitation of MgO (pKs,MgO = 11.89 ± 0.3, molality) whereas interaction of Be2+ with O2– is accompanied with sequential formation of Be2O2+ (pK = 15.68 ± 0.5, molality) and precipitation of BeO (pKs,BeO = 9.62 ± 0.3, molality). On the basis of the obtained and known data pKs,MgOT−1 dependence in molten (CsCs + KCl + NaCl) eutectic is constructed. The slope of the said dependence in T/K = (from 583 to 1073) range is in good agreement with the value predicted by the Shreder equation, that extends the range of use of the Shreder equation for predictions of metal oxide solubilities in molten halides.  相似文献   

13.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

14.
《Polyhedron》2007,26(9-11):2189-2199
In order to study the templating effect of the cation and the resulting impact on the magnetic properties, reactions of M(II) salts with [cation][Au(CN)2] were conducted, yielding a series of coordination polymers of the form [cation]{M[Au(CN)2]3} (cation = nBu4N+, PPN+ (bis(triphenylphosphoranylidene)ammonium); M = Ni(II) and Co(II)). The structures of nBu4N{M[Au(CN)2]3} and PPN{M[Au(CN)2]3} (M = Ni and Co) contain two distinct 3-D anionic frameworks of {M[Au(CN)2]3}, hence the framework was sensitive to the cation, but not to the identity of the metal center. In nBu4N{M[Au(CN)2]3}, the metal centers are connected by [Au(CN)2] units to form six 2-D (4, 4) rectangular grids that are fused through the M centers to yield a complex three-dimensional framework which accommodates the nBu4N+ cations. In PPN{M[Au(CN)2]3}, the framework adopts a simpler non-interpenetrated Prussian-blue-type pseudo-cubic array, with the PPN+ cations occupying each cavity; no reduction in dimensionality occurs despite the large cation size. In the presence of water, {Co(H2O)2[Au(CN)2]2} · nBu4N[Au(CN)2] was obtained, a 2-D layered polymer that contains neutral sheets of {Co(H2O)2[Au(CN)2]2} which are separated by nBu4N[Au(CN)2] layers; aurophilic interactions of 3.4250(13) Å and hydrogen-bonding connect the layers. The magnetic properties of all compounds were investigated by SQUID magnetometry. The Ni(II) polymers have similar magnetic behaviour, which are dominated by zero-field splitting with very weak antiferromagnetic interactions at low temperature (D  2–3 cm−1, zJ < 1 cm−1). The magnetic behaviour of all of the Co(II) polymers were found to be very similar, and dominated by single-ion effects (i.e. a large first-order orbital contribution). No significant magnetic coupling is observed in any of these coordination polymers, suggesting that the [Au(CN)2] bridging unit behaves as a poor mediator of magnetic exchange in these high-dimensionality systems.  相似文献   

15.
We determined apparent molar volumes V? at 298.15 ? (T/K) ? 368.15 and apparent molar heat capacities Cp,? at 298.15 ? (T/K) ? 393.15 for aqueous solutions of HIO3 at molalities m from (0.015 to 1.0) mol · kg?1, and of aqueous KIO3 at molalities m from (0.01 to 0.2) mol · kg?1 at p = 0.35 MPa. We also determined V? at the same p and at 298.15 ? (T/K) ? 368.15 for aqueous solutions of KI at m from (0.015 to 7.5) mol · kg?1. We determined Cp,? at the same p and at 298.15 ? (T/K) ? 393.15 for aqueous solutions of KI at m from (0.015 to 5.5) mol · kg?1, and for aqueous solutions of NaIO3 at m from (0.02 to 0.15) mol · kg?1. Values of V? were determined from densities measured with a vibrating-tube densimeter, and values of Cp,? were determined with a twin fixed-cell, differential temperature-scanning calorimeter. Empirical functions of m and T were fitted to our results for each compound. Values of Ka, ΔrHm, and ΔrCp,m for the proton ionization reaction of aqueous HIO3 are calculated and discussed.  相似文献   

16.
A new indium hydroxyphosphate containing silver, AgIn[PO3(OH)]2, has been synthesized using hydrothermal method. It crystallizes in the P21/c space group with the cell parameters a = 6.6400(2) Å, b = 14.6269(6) Å, c = 6.6616(4) Å, β = 95.681(5)°, V = 643.82(6) Å3, Z = 4. Its three-dimensional framework, built up of corner-sharing PO3(OH) tetrahedra and InO6 octahedra, presents intersecting tunnels running along <111> and [100] directions, in which the Ag+ cations are located. The presence of hydroxyl groups has been confirmed from IR spectroscopy studies and hydrogen atoms were located from the single crystal X-ray diffraction study. The structural relationships with the other compounds of general formula AIMIII[PO3(OH)]2 are analyzed.  相似文献   

17.
Ternary mutual diffusion coefficients measured by Taylor dispersion method (D11, D22, D12, and D21) are reported for aqueous solutions of KCl + theophylline (THP) at T = 298.15 K at carrier concentrations from (0.000 to 0.010) mol · dm?3, for each solute. These diffusion coefficients have been measured having in mind a better understanding of the structure of these systems and the thermodynamic behavior of potassium chloride and theophylline in solution. For example, from these data it will be possible to make conclusions about the influence of this electrolyte in diffusion of THP and to estimate some parameters, such as the diffusion coefficient of the aggregate between KCl and THP.  相似文献   

18.
We present a binder-free catalytic anode for highly efficient and stable oxygen evolution reaction in alkaline media. The catalyst consists of a thin film of buserite-type layered manganese dioxide (MnO2) intercalated with Co2 + ions, resulting from electrodeposition of the layered MnO2 film with tetrabutylammonium (Bu4N+) ions on a carbon cloth, followed by ion-exchange of the initially incorporated Bu4N+ with Co2 + in solution. The electrode is capable to produce a current density of 10 mA cm 2 at an overpotential (η) of 377 mV with a Tafel slope of 48 mV dec 1, much superior to the layered MnO2 without Co2 +.  相似文献   

19.
A family of microporous lanthanide silicates, K8Ln3Si12O32NO3·H2O (denoted LnSiO-CJ3, Ln = Eu, Tb, Gd, Sm), was synthesized under mild hydrothermal conditions at 503 K. The X-ray powder diffraction patterns of these compounds reveal that they are isostructural. The structure of EuSiO-CJ3 was determined by single-crystal X-ray diffraction analysis. It crystallizes in triclinic space group P-1 (No. 2) with a = 11.599(2) Å, b = 12.225(2) Å, c = 13.829(3) Å, α = 112.99(3)°, β = 92.05(3)°, γ = 90.57(3)°. The structure is based on [Si3O8]n4n? layers with 6-, 8-, 12-rings that are connected by EuO6 octahedra to form a 3-D framework with 8-ring channels along the [001] direction. Charge neutrality is achieved by the K+ and NO3? ions located in the channels. The framework of EuSiO-CJ3 shows good thermal stability, which can be stable up to 1273 K. Ion-exchange capacity of EuSiO-CJ3 was investigated by the exchange of NO3? ions with halide ions (F?, Cl?, Br?). The peaks in the emission spectra of LnSiO-CJ3 (Ln = Eu, Tb) belong to the characteristic transitions of Ln3+ (Ln = Eu, Tb) respectively. The lifetime measurements of LnSiO-CJ3 (Ln = Eu, Tb) suggest the presence of three Ln3+ (Ln = Eu, Tb) environments, which are consistent with the crystallographic results.  相似文献   

20.
The low-temperature heat capacity of NiAl2O4 and CoAl2O4 was measured between T = (4 and 400) K and thermodynamic functions were derived from the results. The measured heat-capacity curves show sharp anomalies peaking at around T = 7.5 K for NiAl2O4 and at T = 9 K for CoAl2O4. The exact cause of these anomalies is unknown. From our results, we suggest a standard entropy for NiAl2O4 at T = 298.15 K of (97.1 ± 0.2) J · mol?1 · K?1 and for CoAl2O4 of (100.3 ± 0.2) J · mol?1 · K?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号