首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard (p° = 0.1 MPa) molar enthalpies of combustion of 1-(2H)-phthalazinone and phthalhydrazide, both in the solid phase, were measured at T = 298.15 K by static bomb calorimetry. Further, the standard molar enthalpies of sublimation, at T = 298.15 K, of these two phthalazine derivatives were derived from the Knudsen effusion technique. The combustion calorimetry results together with those obtained from the Knudsen effusion technique, were used to derive the standard molar enthalpies of formation, at T = 298.15 K, in the gaseous phase for 1-(2H)-phthalazinone and phthalhydrazide, respectively as, (79.1 ± 1.8) kJ · mol?1 and ?(107.4 ± 2.4) kJ · mol?1.  相似文献   

2.
The standard molar energies of combustion, at T = 298.15 K, of crystalline 1,4-benzodioxan-2-carboxylic acid and 1,4-benzodioxan-2-hydroxymethyl were measured by static bomb calorimetry in an oxygen atmosphere. The standard molar enthalpies of sublimation, at T = 298.15 K, were obtained by Calvet microcalorimetry. These values were used to derive the standard molar enthalpies of formation of the compounds in the gas phase at T = 298.15 K: 1,4-benzodioxan-2-carboxylic acid ?(547.7 ± 3.0) kJ · mol?1 and 1,4-benzodioxan-2-hydroxymethyl ?(374.2 ± 2.3) kJ · mol?1.In addition, density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with extended basis sets, 6-311G7 and cc-pVTZ, have been performed for the compounds studied. We have also tested two more accurate computational procedures involving multiple levels of electron structure theory in order to get reliable estimates of the thermochemical parameters of the compounds studied. The agreement between experiment and theory gives confidence to estimate the enthalpies of formation of other 2-R derivatives of 1,4-benzodioxan (R = –CH2COOH, –OH, –COCH3, –CHO, –CH3, –CN, and –NO2).  相似文献   

3.
The standard (p° = 0.1 MPa) molar energies of combustion of 2-furancarbonitrile, 2-acetylfuran, and 3-furaldehyde were measured by static bomb combustion calorimetry; the Calvet high-temperature microcalorimetry was used to measure the enthalpies of vaporization of these liquid compounds. The standard molar enthalpies of formation of the three compounds, in the gaseous phase, at T = 298.15 K, have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of phase transition, as (106.8 ± 1.1) kJ · mol?1, ?(207.4 ± 1.3) kJ · mol?1, and ?(151.9 ± 1.1) kJ · mol?1, for 2-furancarbonitrile, 2-acetylfuran, and 3-furaldehyde, respectively.Standard molar enthalpies of formation are discussed in terms of the isomerization ortho meta. Enthalpic increment values of the introduction of the functional groups –CN, –CHO, and –COCH3 were also compared with some other heterocycles; i.e. thiophene and pyridine.  相似文献   

4.
The energetic effects caused by replacing one of the methylene groups in the 9,10-dihydroanthracene by ether or ketone functional groups yielding xanthene and anthrone species, respectively, were determined from direct comparison of the standard (p° = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, of these compounds. The experimental static-bomb combustion calorimetry and Calvet microcalorimetry and the computational G3(MP2)//B3LYP method were used to get the standard molar gas-phase enthalpies of formation of xanthene, (41.8 ± 3.5) kJ · mol?1, and anthrone, (31.4 ± 3.2) kJ · mol?1. The enthalpic increments for the substitution of methylene by ether and ketone in the parent polycyclic compound (9,10-dihydroanthracene) are ?(117.9 ± 5.5) kJ · mol?1 and ?(128.3 ± 5.4) kJ · mol?1, respectively.  相似文献   

5.
The standard (p° = 0.1 MPa) molar enthalpies of formation of 3-acetylbenzonitrile and benzoylacetonitrile, in the crystalline phase, were derived from the respective standard massic energies of combustion measured by static bomb combustion calorimetry, in oxygen, at T = 298.15 K. The standard molar enthalpies of sublimation, at T = 298.15 K, were measured by Calvet microcalorimetry. From the above experimentally determined enthalpic parameters, the standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, are found to be: (52.4 ± 2.1) kJ · mol−1 and (74.8 ± 2.5) kJ · mol−1 for 3-acetylbenzonitrile and benzoylacetonitrile, respectively.Molecular structures were computed using highly accurate ab initio techniques. Standard molar enthalpies of formation of the experimentally studied compounds were derived using an appropriate set of working reactions. Very good agreement between the calculated and the experimental values was obtained, so the calculations were extended to the estimates of the standard molar enthalpies of formation of 2- and 4-acetylbenzonitriles whose study was not performed experimentally.Our results were further interpreted and rationalized in terms of the enthalpic stability and compared to other relevant disubstituted benzenes.  相似文献   

6.
The standard (p° = 0.1 MPa) molar enthalpy of formation β-tetralone was measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpy of vaporization, at T = 298.15 K, was obtained using Calvet microcalorimetry.These values were used to derive the standard molar enthalpy of formation of the compound in the gaseous phase, at T = 298.15 K, ?(75.2 ± 2.5) kJ · mol?1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy function with extended basis sets and more accurate correlated computational techniques of the MCCM/3 suite have been performed.  相似文献   

7.
The standard (p° = 0.1 MPa) molar enthalpies of combustion and sublimation of 3,4,5-trimethoxyphenol were measured, respectively, by static bomb combustion calorimetry in oxygen atmosphere and by Calvet microcalorimetry. From these measurements, the standard molar enthalpy of formation in both the crystalline and gaseous phase, at T = 298.15 K, were derived: ?(643.4 ± 1.9) kJ · mol?1 and ?(518.1 ± 3.6) kJ · mol?1, respectively. Density functional theory calculations for this compound and respective phenoxyl radical and phenoxide anion were also performed using the B3LYP functional and extended basis sets, which allowed the theoretical estimation of the gaseous phase standard molar enthalpy of formation through the use of isodesmic reactions and the calculation of the homolytic and heterolytic O–H bond dissociation energies. There is good agreement between the calculated and experimental enthalpy of formation. Substituent effects on the homolytic and heterolytic O–H bond dissociation energies have been analysed.  相似文献   

8.
Values of the condensed phase standard (p = 0.1 MPa) molar enthalpy of formation for 2′- and 4′-methylacetophenones were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The values of the standard molar enthalpy of vaporization, at T = 298.15 K, were measured by Calvet microcalorimetry. Combining these two values, the following enthalpies of formation in the gas phase, at T = 298.15 K, were then derived: 2′-methylacetophenone, –(115.7 ± 2.4) kJ · mol−1, and 4′-methylacetophenone, –(122.6 ± 2.4) kJ · mol−1. Substituent effects are discussed in terms of stability and compared with other similar compounds. The value of the standard molar enthalpy of formation for 3′-methylacetophenone was estimated from isomerization schemes.  相似文献   

9.
The standard (po = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, for the liquids 2-methoxypyridine, 4-methoxypyridine and 2,6-dimethoxypyridine were determined by static bomb combustion calorimetry. The standard molar enthalpies of vaporization, at T = 298.15 K, were measured by Calvet microcalorimetry. The standard (po = 0.1 MPa) molar enthalpies of formation of the three compounds studied, in the gaseous phase, at T = 298.15 K have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of vaporization, yielding ((−42.7 ± 1.9), (−18.2 ± 1.8) and (−233.5 ± 1.8)) kJ · mol−1, for 2-methoxypyridine, 4-methoxypyridine and 2,6-dimethoxypyridine, respectively.  相似文献   

10.
In this work, we have determined the experimental standard (p°=0.1MPa) molar enthalpies of formation, in the gas phase, of 2,6-dimethyl-4-pyrone ?(261.5 ± 2.6) kJ · mol?1 and 2-ethyl-3-hydroxy-4-pyrone ?(420.9 ± 2.8) kJ · mol?1. These values were obtained by combining the standard molar enthalpy of formation in the condensed phase, derived from combustion experiments in oxygen, at T = 298.15 K, in a static bomb calorimeter, with the standard molar enthalpy of sublimation, at T = 298.15 K, obtained by Calvet microcalorimetry. Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets have been performed for these two compounds. Good agreement was obtained between the experimental and computational results. Using the same methodology, we calculated the standard molar enthalpy of formation of gaseous 2-methyl-3-hydroxy-4-pyrone.  相似文献   

11.
The molar enthalpies of reaction of metallic barium with 0.047 mol·dm−3 HClO4 as well as the molar enthalpies of dissolution of BaCl2 in 1.01 mol·dm−3 HCl and in water have been measured at T=298.15 K in a sealed swinging calorimeter with an isothermal jacket. From these results the standard molar enthalpy of formation of the barium ion in an aqueous solution at infinite dilution, as well as the enthalpies of formation of barium chloride and barium perchlorate, are calculated to be: ΔfH0m(Ba2+,aq)=−(535.83±1.25) kJ · mol−1; ΔfH0m(BaCl2,cr)=−(855.66±1.28) kJ · mol−1; and ΔfH0m(BaClO4,cr)=−(796.26±1.35) kJ · mol−1. The results obtained are discussed and compared with previous experimental values.  相似文献   

12.
Thermochemical and thermophysical studies have been carried out for crystalline 3,4,4′-trichlorocarbanilide. The standard (p° = 0.1 MPa) molar enthalpy of formation, at T = 298.15 K, for the crystalline 3,4,4′-trichlorocarbanilide (TCC) was experimentally determined using rotating-bomb combustion calorimetry, as ?(234.6 ± 8.3) kJ · mol?1. The standard enthalpy of sublimation, at the reference temperature of 298.15 K, was measured by the vacuum drop microcalorimetric technique, using a High Temperature Calvet Microcalorimeter as (182.1 ± 1.7) kJ · mol?1. These two thermochemical parameters yielded the standard molar enthalpy of formation of the studied compound, in the gaseous phase, at T = 298.15 K, as ?(52.5 ± 8.5) kJ · mol?1. This parameter was also calculated by computational thermochemistry at M05-2X/6-311++G7 and B3LYP/6-311++G(3df, 2p) levels, with a deviation less than 4.5 kJ · mol?1 from experimental value. Moreover, the thermophysical study was made by differential scanning calorimetry, DSC, over the temperature interval between T = 263 K and its onset fusion temperature, T = (527.5 ± 0.4) K. A solid–solid phase transition was found at T = (428 ± 1) K, with the enthalpy of transition of (6.1 ± 0.1) kJ · mol?1. The X-ray crystal structure of TCC was determined and the three-centred N–H?OC hydrogen bonds present analyzed.  相似文献   

13.
Thermochemical properties of uracil and thymine have been evaluated using additional experiments. Standard (p0 = 0.1 MPa) molar enthalpies of formation in the gas phase at T = 298.15 K for uracil −(298.1 ± 0.6) and for thymine −(337.6 ± 0.9) kJ · mol−1 have been derived from energies of combustion measured by static bomb combustion calorimetry and molar enthalpies of sublimation determined using the transpiration method. The G3 and G4 quantum-chemical methods were used for calculations of theoretical gaseous enthalpies of formation being in very good agreement with the re-measured experimental values.  相似文献   

14.
The energies of combustion for 2-nitrobenzenesulfonamide (cr), 3-nitrobenzenesulfonamide (cr), and 4-nitrobenzenesulfonamide (cr) were determined using a recently described rotating-bomb combustion calorimeter. The condensed phase molar energies of combustion obtained were ?(3479.2 ± 1.0) kJ · mol?1 for 2-nitrobenzenesulfonamide (cr), ?(3454.2 ± 1.1) kJ · mol-1 for 3-nitrobenzenesulfonamide (cr), and ?(3450.1 ± 1.9) kJ · mol-1 for 4-nitrobenzenesulfonamide (cr). From these combustion energy values, the standard molar enthalpies of formation in the condensed phase were obtained as: ?(341.3 ± 1.3) kJ · mol?1, ?(366.3 ± 1.3) kJ · mol?1, and ?(370.4 ± 2.1) kJ · mol?1, respectively. Polyethene bags were used as an auxiliary material in the combustion experiments. The heat capacities and purities of the compounds were determined using a differential scanning calorimeter.  相似文献   

15.
The standard (p = 0.1 MPa) molar enthalpy of formation for crystalline 2,3-dihydroxypyridine was measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpy of sublimation, at T = 298.15 K, was obtained using Calvet microcalorimetry. These values were used to derive the standard molar enthalpy of formation of 2,3-dihydroxypyridine in gaseous phase, at T = 298.15 K, –(263.9 ± 4.6) kJ · mol−1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets have been performed for all dihydroxypyridine isomers to determine the thermochemical order of stability of these systems. The agreement between experiment and theory for the 2,3-dihydroxypyridine isomer gives confidence to the estimates of the enthalpies of formation concerning the other five isomers. It is found that the enthalpic increment for the dihydroxy substitution of pyridine is equal to the sum of the respective enthalpic increment of the monosubstituted pyridines.  相似文献   

16.
17.
Two pure zinc borates with microporous structure 3ZnO·3B2O3·3.5H2O and 6ZnO·5B2O3·3H2O have been synthesized and characterized by XRD, FT-IR, TG techniques and chemical analysis. The molar enthalpies of solution of 3ZnO·3B2O3·3.5H2O(s) and 6ZnO·5B2O3·3H2O(s) in 1 mol · dm−3 HCl(aq) were measured by microcalorimeter at T = 298.15 K, respectively. The molar enthalpies of solution of ZnO(s) in the mixture solvent of 2.00 cm3 of 1 mol · dm−3 HCl(aq) in which 5.30 mg of H3BO3 were added were also measured. With the incorporation of the previously determined enthalpy of solution of H3BO3(s) in 1 mol · dm−3 HCl(aq), together with the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(6115.3 ± 5.0) kJ · mol−1 for 3ZnO·3B2O3·3.5H2O and −(9606.6 ± 8.5) kJ · mol−1 for 6ZnO·5B2O3·3H2O at T = 298.15 K were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

18.
The strain energy of phenanthrene was derived to be (4.9 ± 2.8) kJ · mol−1, on the basis of the latest standard enthalpies of formation of polycyclic aromatic hydrocarbons. This strain energy agrees well with those estimated from a semi-empirical calculation and from the basicity in hydrogen fluoride solution. The calculation again confirmed the standard enthalpy of formation of phenanthrene, ΔfH0(g)=(201.7±2.9) kJ · mol−1 at T=298.15 K, which was determined by Nagano (J. Chem. Thermodyn. 34 (2002) 377–383). The coupling constant J4,5 in 1H-n.m.r. spectrum of phenanthrene in CDCl3 solution was determined to be 0.55 Hz, which indicates no significant through-space coupling between the 4- and 5-hydrogens.  相似文献   

19.
The energetics of 1-benzosuberone was studied by a combination of calorimetric techniques and computational calculations.The standard (p° = 0.1 MPa) molar enthalpy of formation of 1-benzosuberone, in the liquid phase, was derived from the massic energy of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The standard molar enthalpy of vaporization, at T = 298.15 K, was measured by Calvet microcalorimetry. From these two parameters the standard (p° = 0.1 MPa) molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, was derived: ?(96.1 ± 3.4) kJ · mol?1. The G3(MP2)//B3LYP composite method and appropriate reactions were used to computationally calculate the standard molar enthalpy of formation of 1-benzosuberone, in the gaseous phase, at T = 298.15 K. The computational results are in very good agreement with the experimental value.  相似文献   

20.
The standard (p° = 0.1 MPa) molar energy of combustion in oxygen, at T = 298.15 K, of 7-hydroxycoumarin was measured by static bomb calorimetry. The value of the standard molar enthalpy of sublimation was obtained by Calvet microcalorimetry and corrected to T = 298.15 K. Combining these results, the standard molar enthalpy of formation of the compound, in the gas phase, at T = 298.15 K, has been calculated, ?(337.5 ± 2.3) kJ · mol?1. The values for the temperature of fusion, Tfusion, and for the fusion enthalpy, at T = Tfusion, are also reported.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets, the MC3BB and MC3MPW methods and more accurate correlated computational techniques of the MCCM suite have been performed for the compound.The agreement between experiment and theory gives confidence to estimate the enthalpy of formation of the remaining hydroxycoumarins substituted in the benzene ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号