首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
The Boltzmann simplified velocity distribution function equation describing the gas transfer phenomena from various flow regimes will be explored and solved numerically in this study. The discrete velocity ordinate method of the gas kinetic theory is studied and applied to simulate the complex multi-scale flows. Based on the uncoupling technique on molecular movement and colliding in the DSMC method, the gas-kinetic finite difference scheme is constructed to directly solve the discrete velocity distribution functions by extending and applying the unsteady time-splitting method from computational fluid dynamics. The Gauss-type discrete velocity numerical quadrature technique for different Mach number flows is developed to evaluate the macroscopic flow parameters in the physical space. As a result, the gas-kinetic numerical algorithm is established to study the three-dimensional complex flows from rarefied transition to continuum regimes. The parallel strategy adapted to the gas-kinetic numerical algorithm is investigated by analyzing the inner parallel degree of the algorithm, and then the HPF parallel processing program is developed. To test the reliability of the present gas-kinetic numerical method, the three-dimensional complex flows around sphere and spacecraft shape with various Knudsen numbers are simulated by HPF parallel computing. The computational results are found in high resolution of the flow fields and good agreement with the theoretical and experimental data. The computing practice has confirmed that the present gas-kinetic algorithm probably provides a promising approach to resolve the hypersonic aerothermodynamic problems with the complete spectrum of flow regimes from the gas-kinetic point of view of solving the Boltzmann model equation. Supported by the National Natural Science Foundation of China (Grant Nos. 90205009 and 10321002) and the National Parallel Computing Center  相似文献   

2.
研究各流域三维流动问题的Boltzmann模型方程计算方法,建立直接求解分子速度分布函数的气体运动论耦合迭代数值格式;基于变量依赖关系、数据通信与并行可扩展性分析,使用区域分解并行化方法,建立气体运动论数值算法并行方案,发展求解各流域三维绕流问题的气体运动论并行算法.拟定高低不同马赫数下来自不同流域的三维球体及返回舱绕流算例,进行高性能Fortran(HPF)大规模并行计算,将计算结果与有关实验数据、相关理论预测等进行比较分析,研究揭示不同流区复杂绕流现象及流动机理.研究表明,所发展的气体运动论并行算法具有很好的并行独立性,基本达到线性加速的并行效果,显示出良好的并行可扩展性.  相似文献   

3.
李志辉  彭傲平  方方  李四新  张顺玉 《物理学报》2015,64(22):224703-224703
如何准确可靠地模拟从外层空间高稀薄流到近地面连续流的航天器高超声速绕流环境与复杂流动变化机理是流体物理的前沿基础科学问题. 基于对Boltzmann方程碰撞积分的物理分析与可计算建模, 确立了可描述自由分子流到连续流区各流域不同马赫数复杂流动输运现象统一的Boltzmann模型速度分布函数方程, 发展了适于高、低不同马赫数绕流问题的离散速度坐标法和直接求解分子速度分布函数演化更新的气体动理论数值格式, 建立了模拟复杂飞行器跨流域高超声速飞行热环境绕流问题的气体动理论统一算法. 对稀薄流到连续流不同Knudsen数0.002 ≤Kn ≤1.618、不同马赫数下可重复使用卫星体再入过程(110–70 km)中高超声速绕流问题进行算法验证分析, 计算结果与典型文献的Monte Carlo直接模拟值及相关理论分析符合得较好. 研究揭示了飞行器跨流域不同高度高超声速复杂流动机理、绕流现象与气动力/热变化规律, 提出了一个通过数值求解介观Boltzmann模型方程, 可靠模拟高稀薄自由分子流到连续流跨流域高超声速气动力/热绕流特性统一算法.  相似文献   

4.
考虑转动能的一维/二维Boltzmann-Rykov模型方程数值算法   总被引:1,自引:0,他引:1  
研究考虑转动能的Boltzmann-Rykov模型方程,基于转动自由度对气体分子速度分布函数矩积分,引入约化速度分布函数,应用离散速度坐标法与数值积分技术,将气体运动论模型方程化为在离散速度坐标点处关于三个约化速度分布函数的联立方程组.应用拓展计算流体力学有限差分方法,数值计算考虑转动自由度的双原子气体一维、二维Boltzmann模型方程,得到高、低Knudsen数一维激波管内流动和二维竖直平板绕流问题的流场,分析验证考虑转动能的Boltzmann-Rykov模型方程全流域统一算法求解一维/二维气体流动问题的可靠性.结果表明,气体稀薄程度与分子内自由度对流场具有较大影响,且Knudsen数较高的稀薄气体流动呈现严重的非平衡流动特点.  相似文献   

5.
In this work, we have theoretically analyzed and numerically evaluated the accuracy of high-order lattice Boltzmann (LB) models for capturing non-equilibrium effects in rarefied gas flows. In the incompressible limit, the LB equation is shown to be able to reduce to the linearized Bhatnagar–Gross–Krook (BGK) equation. Therefore, when the same Gauss–Hermite quadrature is used, LB method closely resembles the discrete velocity method (DVM). In addition, the order of Hermite expansion for the equilibrium distribution function is found not to be directly correlated with the approximation order in terms of the Knudsen number to the BGK equation for incompressible flows. Meanwhile, we have numerically evaluated the LB models for a standing-shear-wave problem, which is designed specifically for assessing model accuracy by excluding the influence of gas molecule/surface interactions at wall boundaries. The numerical simulation results confirm that the high-order terms in the discrete equilibrium distribution function play a negligible role in capturing non-equilibrium effect for low-speed flows. By contrast, appropriate Gauss–Hermite quadrature has the most significant effect on whether LB models can describe the essential flow physics of rarefied gas accurately. Our simulation results, where the effect of wall/gas interactions is excluded, can lead to conclusion on the LB modeling capability that the models with higher-order quadratures provide more accurate results. For the same order Gauss–Hermite quadrature, the exact abscissae will also modestly influence numerical accuracy. Using the same Gauss–Hermite quadrature, the numerical results of both LB and DVM methods are in excellent agreement for flows across a broad range of the Knudsen numbers, which confirms that the LB simulation is similar to the DVM process. Therefore, LB method can offer flexible models suitable for simulating continuum flows at the Navier–Stokes level and rarefied gas flows at the linearized Boltzmann model equation level.  相似文献   

6.
~~Gas kinetic algorithm for flows in Poiseuille-like microchannels using Boltzmann model equation1. Feynman, R., There's plenty of room at the bottom, Journal of Microelectromechanical Systems, 1992, 1: 60 -66. 2. Piekos, E. S., Breuer, K. S., Numerical modeling of micromechanical devices using the direct simulation Monte Carlo method, Transactions of the ASME, Journal of Fluids Engineering, 1996, 118: 464-469. 3. Beskok, A., Karniadakis, G. E., Trimmer, W., Rarefaction and …  相似文献   

7.
基于D1Q4可压缩格子Boltzmann模型,按照流通矢量分裂方法的思路,采用坐标旋转技术构造求解三维带化学反应Navier-Stokes方程对流通量求解器.结合有限体积法求解三维化学非平衡流Navier-Stokes方程,采用时间算子分裂算法解决化学反应刚性问题,数值模拟超声速化学非平衡流的三个经典算例.数值结果表明:在高马赫数下,采用D1Q4可压缩格子Boltzmann模型构造的三维对流通量求解器数值模拟中没有出现非物理解,同时在超声速化学非平衡流场中正确分辨激波、燃烧波等物理现象,精度和分辨率均较高,验证了本文构造的三维对流通量求解器的可靠性,拓宽了D1Q4可压缩格子Boltzmann模型的应用范围,为计算超声速化学非平衡流提供一种新方法.  相似文献   

8.
A class of lower–upper symmetric Gauss–Seidel implicit weighted essentially nonoscillatory (WENO) schemes is developed for solving the preconditioned Navier–Stokes equations of primitive variables with Spalart–Allmaras one-equation turbulence model. The numerical flux of the present preconditioned WENO schemes consists of a first-order part and high-order part. For first-order part, we adopt the preconditioned Roe scheme and for the high-order part, we employ preconditioned WENO methods. For comparison purpose, a preconditioned TVD scheme is also given and tested. A time-derivative preconditioning algorithm is devised and a discriminant is devised for adjusting the preconditioning parameters at low Mach numbers and turning off the preconditioning at intermediate or high Mach numbers. The computations are performed for the two-dimensional lid driven cavity flow, low subsonic viscous flow over S809 airfoil, three-dimensional low speed viscous flow over 6:1 prolate spheroid, transonic flow over ONERA-M6 wing and hypersonic flow over HB-2 model. The solutions of the present algorithms are in good agreement with the experimental data. The application of the preconditioned WENO schemes to viscous flows at all speeds not only enhances the accuracy and robustness of resolving shock and discontinuities for supersonic flows, but also improves the accuracy of low Mach number flow with complicated smooth solution structures.  相似文献   

9.
In this paper, a switch function-based gas-kinetic scheme (SF-GKS) is presented for the simulation of inviscid and viscous compressible flows. With the finite volume discretization, Euler and Navier-Stokes equations are solved and the SF-GKS is applied to evaluate the inviscid flux at cell interface. The viscous flux is obtained by the conventional smooth function approximation. Unlike the traditional gas-kinetic scheme in the calculation of inviscid flux such as Kinetic Flux Vector Splitting (KFVS), the numerical dissipation is controlled with a switch function in the present scheme. That is, the numerical dissipation is only introduced in the region around strong shock waves. As a consequence, the present SF-GKS can well capture strong shock waves and thin boundary layers simultaneously. The present SF-GKS is firstly validated by its application to the inviscid flow problems, including 1-D Euler shock tube, regular shock reflection and double Mach reflection. Then, SF-GKS is extended to solve viscous transonic and hypersonic flow problems. Good agreement between the present results and those in the literature verifies the accuracy and robustness of SF-GKS.  相似文献   

10.
The high-order compact finite difference technique is introduced to solve the Boltzmann model equation, and the gas-kinetic high-order schemes are developed to simulate the different kinetic model equations such as the BGK model, the Shakhov model and the Ellipsoidal Statistical (ES) model in this paper. The methods are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the inner flows of normal shock wave for different Mach numbers, and the two-dimensional flows past ...  相似文献   

11.
In this paper, a three-dimensional (3D) finite-difference lattice Boltzmann model for simulating compressible flows with shock waves is developed in the framework of the double-distribution-function approach. In the model, a density distribution function is adopted to model the flow field, while a total energy distribution function is adopted to model the temperature field. The discrete equilibrium density and total energy distribution functions are derived from the Hermite expansions of the continuous equilibrium distribution functions. The discrete velocity set is obtained by choosing the abscissae of a suitable Gauss–Hermite quadrature with sufficient accuracy. In order to capture the shock waves in compressible flows and improve the numerical accuracy and stability, an implicit–explicit finite-difference numerical technique based on the total variation diminishing flux limitation is introduced to solve the discrete kinetic equations. The model is tested by numerical simulations of some typical compressible flows with shock waves ranging from 1D to 3D. The numerical results are found to be in good agreement with the analytical solutions and/or other numerical results reported in the literature.  相似文献   

12.
An efficient numerical algorithm for calculating rarefied gas flows in planar microchannels on the basis of the Boltzmann kinetic equation with the linearized S-model collision integral is presented. The algorithm consists of a high-order spatial discretisation on unstructured meshes, conservative procedure to calculate macroscopic quantities and efficient one-step implicit time evolution method. It therefore works across all flow regimes from the free-molecular to nearly continuum ones and provides rapid convergence to steady state solutions. The parallel implementation is provided via MPI programming paradigm. The performance of the method is illustrated by computing the flow for length to the width ratios for up to 103 in the wide range of Knudsen numbers. Numerical estimates of efficiency of implicit time marching and parallel performance as well as convergence studies in both physical and velocity spaces are provided. The end effects and other essentially two-dimensional features of the flow are analysed and a detailed comparison with the case of an infinitely long channel is carried out. The presented numerical data can be used as reference for future studies of nonlinear flows as well as for comparison with other numerical approaches and flow models.  相似文献   

13.
从考虑转动松弛变化特性的Rykov模型出发,基于Boltzmann模型方程求解跨流域气体运动论统一算法原理与计算规则,采用转动惯量描述气体分子自旋运动,研究考虑转动非平衡影响的Boltzmann模型方程数值求解方法.通过对氮气激波结构、二维钝头体和三维尖双锥跨流域绕流的模拟分析,验证该算法的跨流域一致适用性.  相似文献   

14.
临近空间位于航天器入轨与返回的必经区域, 也是临近空间高超声速飞行器长航时飞行空域, 空间环境的特殊性决定了飞行器在穿越时必须考虑稀薄大气环境对飞行器气动力防隔热通讯及控制的影响.Boltzmann方程作为描述气体分子速度分布函数演化规律的微分-积分形式, 在一定条件下能够描述从自由分子流到连续流全流域流动现象.作为Boltzmann方程的宏观表达形式, 矩方程这一经典流体力学方程形式涵盖了Euler方程N-S方程Burnett方程super-Burnett方程及近年来发展的广义流体力学方程——非线性本构关系模型等.由于成熟的CFD数值计算理论及有限矩方程较高的计算效率, 滑移过渡流矩方法相比粒子仿真与Boltzmann模型方程方法具有十分显著的优势和巨大的工程应用潜力.因此, 对近年来传统及新型矩方法研究所取得的进展进行归纳总结, 并针对关键科学问题开展理论与数值计算方法研究, 具有十分重要的理论与工程应用价值.   相似文献   

15.
A unified gas-kinetic scheme for continuum and rarefied flows   总被引:2,自引:0,他引:2  
With discretized particle velocity space, a multiscale unified gas-kinetic scheme for entire Knudsen number flows is constructed based on the BGK model. The current scheme couples closely the update of macroscopic conservative variables with the update of microscopic gas distribution function within a time step. In comparison with many existing kinetic schemes for the Boltzmann equation, the current method has no difficulty to get accurate Navier–Stokes (NS) solutions in the continuum flow regime with a time step being much larger than the particle collision time. At the same time, the rarefied flow solution, even in the free molecule limit, can be captured accurately. The unified scheme is an extension of the gas-kinetic BGK-NS scheme from the continuum flow to the rarefied regime with the discretization of particle velocity space. The success of the method is due to the un-splitting treatment of the particle transport and collision in the evaluation of local solution of the gas distribution function. For these methods which use operator splitting technique to solve the transport and collision separately, it is usually required that the time step is less than the particle collision time. This constraint basically makes these methods useless in the continuum flow regime, especially in the high Reynolds number flow simulations. Theoretically, once the physical process of particle transport and collision is modeled statistically by the kinetic Boltzmann equation, the transport and collision become continuous operators in space and time, and their numerical discretization should be done consistently. Due to its multiscale nature of the unified scheme, in the update of macroscopic flow variables, the corresponding heat flux can be modified according to any realistic Prandtl number. Subsequently, this modification effects the equilibrium state in the next time level and the update of microscopic distribution function. Therefore, instead of modifying the collision term of the BGK model, such as ES-BGK and BGK–Shakhov, the unified scheme can achieve the same goal on the numerical level directly. Many numerical tests will be used to validate the unified method.  相似文献   

16.
Competition of multiple Grtler modes in hypersonic boundary layer flows are investigated with the local and marching methods.The wall-layer mode(mode W)and the trapped-layer mode(mode T)both occur in the compressible boundary layer where there exists a temperature adjustment layer near the upper edge.The mode T has the largest growth rate at a lower Grtler number while the mode W dominates at larger Grtler numbers.These two modes are both responsible for the flow transition in the hypersonic flows especially when Grtler number is in the high value range in which the crossover of these two modes takes place.Such high Grtler numbers are virtually far beyond the neutral regime.The nonparallel base flows,therefore,cease to influence the stability behavior of the Grtler modes.The effects of the Mach number on the multiple Grtler modes are studied within a chosen Mach number of 0.95,2,4 and 6.When the flow Mach number is sufficiently large,e.g.,Ma 4,the growth rate crossover of the mode T and mode W occurs both in the conventional G-βmap as well as on the route downstream for a fixed wavelength disturbance.Four particular regions(Region T,T-W,W-T and W)around the crossover point are highlighted with the marching analysis and the result matches that of the local analysis.The initial disturbance of a normal mode maintains the shape in its corresponding dominating region while a shape-transformation occurs outside this region.  相似文献   

17.
A unified gas kinetic scheme with moving mesh and velocity space adaptation   总被引:1,自引:0,他引:1  
There is great difficulty for direct Boltzmann solvers to simulate high Knudsen number flow due to the severe steep slope and high concentration of the gas distribution function in a local particle velocity space. Local mesh adaptation becomes necessary in order to make the Boltzmann solver to be a practical tool in aerospace applications. The present research improves the unified gas-kinetic scheme (UGKS) in the following two aspects. First, the UGKS is extended in a physical space with moving mesh. This technique is important to study a freely flying object in a rarefied environment. Second, the adaptive quadtree method in the particle velocity space is implemented in the UGKS. Due to the new improvements in the discretization of a gas distribution function in the six dimensional phase space, the adaptive unified gas kinetic scheme (AUGKS) is able to deal with a wide range of flow problems under extreme flying conditions, such as the whole unsteady flying process of an object from a highly rarefied to a continuum flow regime. After validating the scheme, the capability of AUGKS is demonstrated in the following two challenge test cases. The first case is about the free movement of an ellipse flying at initial Mach number 5 in a rarefied flow at different Knudsen numbers. The force on the ellipse and the unsteady trajectory of the ellipse movement are fully captured. The gas distribution function around the ellipse is analyzed. The second case is about the study of unsteady flight of a nozzle under a bursting process of the compressed gas expanding into a rarefied environment. Due to the strong expansion wave and the huge density difference between interior and exterior regions around the nozzle, the particle distribution function changes dramatically in the particle velocity space. The use of an adaptive velocity space in the AUGKS becomes necessary to simulate such a flow and to control the computational cost to a tolerable level. The second test is a challenge problem for any existing rarefied flow solver.  相似文献   

18.
基于从稀薄流到连续流的跨流域气体动理论统一算法(gas-kinetic unified algorithm,GKUA),通过数值求解考虑转动自由度激发的Boltzmann-Rykov模型方程,得到了一种跨流域非定常流动数值模拟的方法.该求解方法以Boltzmann模型方程为控制方程,在常温状态下如果考虑转动能激发的情况...  相似文献   

19.
In this paper a lattice Boltzmann (LB) model to simulate incompressible flow is developed. The main idea is to explicitly eliminate the terms of o(M 2), where M is the Mach number, due to the density fluctuation in the existing LB models. In the proposed incompressible LB model, the pressure p instead of the mass density ρ is the independent dynamic variable. The incompressible Navier–Stokes equations are derived from the incompressible LB model via Chapman–Enskog procedure. Numerical results of simulations of the plane Poiseuille flow driven either by pressure gradient or a fixed velocity profile at entrance as well as of the 2D Womersley flow are presented. The numerical results are found to be in excellent agreement with theory.  相似文献   

20.
Axial and azimuthal flow velocities have been measured in a linear plasma device called NAGDIS-II (NAGoya DIvertor Simulator-II), along with plasma density and electron temperature, using a vector Mach probe composed of two Mach probes, one of which is for the axial flow, and the other is for the azimuthal flow. To study the effect of neutral pressure on the deduction of the Mach numbers, the ratio of upstream to downstream currents are measured by changing the neutral pressure for the deduction of flow velocities. Helium plasma was generated with pressure of 2–35 mTorr. Since the ion gyro-radius at the magnetic flux of 300 G is larger than the probe size, an unmagnetized collisionless Mach probe theory was used for the deduction of Mach numbers and their variations. In order to check the range of collisionality, plasma density (ne = 1010–1011 cm?3) and electron temperature (Te = 2–9 eV) are measured by a single electric probe using a conventional collisionless probe theory. Variations of Mach number, electron temperature and plasma density with collisionless models are to be compared with those using collisional models for different pressures where ionization and ion-neutral collision are included. Mach numbers by the collisionless model are found to be overestimated by 120% for the maximum difference even in weakly collisional plasmas. A clear flow reversal exists in the axial direction with higher pressure plasma, even in the linear machine. Azimuthal flows are also measured simultaneously along with axial flows, yet they seem to be very small in the present cold ion plasma (Ti/Te << 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号