首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pseudoelasticity and the shape memory effect (SME) due to martensitic transformation and reorientation of polycrystalline shape memory alloy (SMA) materials are modeled using a free energy function and a dissipation potential. Three different cases are considered, based on the number of internal state variables in the free energy: (1) austenite plus a variable number of martensite variants; (2) austenite plus two types of martensite; and (3) austenite and one type of martensite. Each model accounts for three-dimensional simultaneous transformation and reorientation. The single-martensite model was chosen for detailed study because of its simplicity and its ease of experimental verification. Closed form equations are derived for the damping capacity and the actuator efficiency of converting heat into work. The first law of thermodynamics is used to demonstrate that significantly more work is required to complete the adiabatic transformation than the isothermal transformation. Also, as the hardening due to the austenite/martensite misfit stresses approaches zero, the transformation approaches the isothermal, infinite specific heat conditions of a first-order transformation. In a second paper, the single-martensite model is used in a mesomechanical derivation of the constitutive equations of an active composite with an SMA phase.  相似文献   

3.
4.
Fluid-saturated sands exhibit irreversible compaction and shear hysteresis under cyclic shear loads in both free draining and undrained conditions. Constitutive relations of differential-type are constructed heuristically from typical qualitative response. An influence of pore pressure on compaction is incorporated, and the generation of pore pressure under cyclic shearing is investigated. Parameter variations in the shear relations allow a variety of hysteresis loop behaviours to be described.  相似文献   

5.
In microplane theory, it is assumed that a macroscopic stress tensor is projected to the microplane stresses. It is also assumed that 1D constitutive laws are defined for associated stress and strain components on all microplanes passing through a material point. The macroscopic strain tensor is obtained by strain integration on microplanes of all orientations at a point by using a homogenization process. Traditionally, microplane formulation has been based on the Volumetric–Deviatoric–Tangential split and macroscopic strain tensor was derived using the principle of complementary virtual work. It has been shown that this formulation could violate the second law of thermodynamics in some loading conditions. The present paper focuses on modeling of shape memory alloys using microplane formulation in a thermodynamically-consistent framework. To this end, a free energy potential is defined at the microplane level. Integrating this potential over all orientations provides the macroscopic free energy. Based on this free energy, a new formulation based on Volumetric–Deviatoric split is proposed. This formulation in a thermodynamic-consistent framework captures the behavior of shape memory alloys. Using experimental results for various loading conditions, the validity of the model has been verified.  相似文献   

6.
Shape memory alloys (SMAs) are materials that, among other characteristics, have the ability to present high deformation levels when subjected to mechanical loading, returning to their original form after a temperature change. Literature presents numerous constitutive models that describe the phenomenological features of the thermomechanical behavior of SMAs. The present paper introduces a novel three-dimensional constitutive model that describes the martensitic phase transformations within the scope of standard generalized materials. The model is capable of describing the main features of the thermomechanical behavior of SMAs by considering four macroscopic phases associated with austenitic phase and three variants of martensite. A numerical procedure is proposed to deal with the nonlinearities of the model. Numerical simulations are carried out dealing with uniaxial and multiaxial single-point tests showing the capability of the introduced model to describe the general behavior of SMAs. Specifically, uniaxial tests show pseudoelasticity, shape memory effect, phase transformation due to temperature change and internal subloops due to incomplete phase transformations. Concerning multiaxial tests, the pure shear stress and hydrostatic tests are discussed showing qualitatively coherent results. Moreover, other tensile–shear tests are conducted modeling the general three-dimensional behavior of SMAs. It is shown that the multiaxial results are qualitative coherent with the related data presented in the literature.  相似文献   

7.
Recently, Fedelich and Zanzotto have developed a model for the nonisothermal pseudoelastic behaviour of a shape memory material and have conducted some numerical simulation experiments. We present a different method for the numerical solution and discuss it in comparison with their results.  相似文献   

8.
The phenomenological SMA equations developed in Part I are used in this second paper to derive the free energy and dissipation of a SMA composite material. The derivation consists of solving a boundary value problem formulated over a mesoscale representative volume element, followed by an averaging procedure to obtain the macroscopic composite constitutive equations. Explicit equations are derived for the transformation tensors that relate the composite transformation strain rate to the phase transformation rate in the fiber and matrix. Some key findings for the two-way SME in a SMA fiber/elastomer matrix composite are that processing-induced residual stresses alter the composite austenite start and martensite start temperatures, as well as the amount of composite strain recovered during a complete cycle of temperature and fiber martensite volume fraction. Relative to the two-way SME response of stiff-matrix composites, it was found that compliant-matrix composites: (1) complete the phase transformation over a narrower temperature range; (2) exhibit greater transformation strain during the reverse transformation; and (3) undergo an incomplete strain cycle during a complete cycle of temperature and fiber martensite volume fraction. Due to the interaction of the fiber and matrix during transformation, macroscopic proportional stressing of the composite results in non-proportional fiber stressing, which in turn causes a small amount of martensitic reorientation to occur simultaneously with the transformation.  相似文献   

9.
A thermodynamic finite-strain model describing the pseudoelastic response of shape memory alloys is proposed. The model is based on a self-consistent Eulerian theory of finite deformations using the logarithmic rate. Purely elastic material response is derived from a hyperelastic potential. The mass fraction of martensite is introduced as internal state variable to indicate the thermomechanical state of the phase transforming material. The evolution of martensite is governed by a kinetic law which is derived from the Helmholtz free energy of the two-phase solid and takes the heat generated during phase transition into account. The material model is implemented into a finite element code in an updated Lagrangian scheme and calibrated to experimental data. Simulations under different loading conditions illustrate the characteristics of the model.  相似文献   

10.
11.
The impressive properties of shape memory alloys are produced by means of solid-to-solid phase transformations where thermal effects play an important role. In this paper, we present a model for polycrystalline shape memory alloys which takes full thermo-mechanical coupling into account. Starting from the equations of the first and the second law of thermodynamics, we derive evolution equations for the volume fractions of the different martensitic variants and a related equation for heat conduction. A thermodynamic analysis allows to formulate a complete expression for the dissipation caused by phase transformation and heat flux. This allows to model the experimentally well-documented transformation fronts in tension tests by a finite element scheme without further assumptions. Additionally, the number of required model parameters is very small in comparison with phenomenological approaches. Numerical examples are presented which show a good agreement with experimental observations.  相似文献   

12.
While developing models for nonlinear mechanical and acoustical behavior of micro-cracked materials, it is common to start from a purely phenomenological approach. Most approaches essentially assume the material to have certain given “mathematical” properties, that lead to an acceptable equation of state (stress-strain relation) containing nonlinearity and hysteresis. In this paper, we formulate a deeper physical insight on the subject of mechanical hysteresis based on physical and measurable material properties. The theory developed in this paper interprets real images of crack networks in micro-inhomogeneous materials, obtained via electron microscopy, and uses this interpretation to build up a micro-potential model for a medium containing elementary cracks with known properties. It is found that the hysteretic contribution of each crack strongly depends on its average rest opening and its asperity. As a result, a distribution of cracks with different properties yields the physical basis for a slightly more complex version of the commonly used Preisach-Mayergoyz space in rock mechanics. The effect of a uniform distribution of the crack properties on the stress-strain relation is shown as an example.  相似文献   

13.
A NEW MODEL OF SHAPE MEMORY ALLOYS   总被引:1,自引:0,他引:1  
A new constitutive model of shape memory alloys ( SMAs) based on Tanaka ' s martensite fraction exponential expression is produced. This new model can present recoverable shape memory strain during different phase transformation, and reflect the action of martensite reorientation . Also it can overcome the defect of Tanaka ' s Model when the SMAs ' microstructure is fully martensite . The model is very simple and suitable for using , and the correct behavior of the model is proved by test.  相似文献   

14.
In this work, we propose a macroscopic phenomenological model that is based on the classical framework of thermodynamics of irreversible processes and accounts for the effect of multiaxial stress states and non-proportional loading histories. The model is able to account for the evolution of both twinned and detwinned martensite. Moreover, reorientation of the product phase according to loading direction is specifically accounted for. Towards this purpose the inelastic strain is split into two contributions deriving, respectively, from creation of detwinned martensite and reorientation of previously existing martensite variants. Computational tests demonstrate the ability of the model to simulate the main aspects of the shape memory response in a one-dimensional setting and some of the features that have been experimentally found in the case of multiaxial non-proportional loading histories. Experimental non-proportional loading paths have also been simulated and a good qualitative agreement between numerical and experimental response is observed.  相似文献   

15.
This paper presents a generalized Zaki-Moumni (ZM) model for shape memory alloys (SMAs) [cf. Zaki, W., Moumni, Z., 2007a. A three-dimensional model of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 55, 2455-2490 accounting for thermomechanical coupling. To this end, the expression of the Helmholtz free energy is modified in order to derive the heat equation in accordance with the principles of thermodynamics. An algorithm is proposed to implement the coupled ZM model into a finite element code, which is then used to solve a thermomechanical boundary value problem involving a superelastic SMA structure. The model is validated against experimental data available in the literature. Strain rate dependence of the mechanical pseudoelastic response is taken into account with good qualitative as well as quantitative accuracy in the case of moderate strain rates and for mechanical results in the case of high strain rates. However, only qualitative agreement is achieved for thermal results at high strain rates. It is shown that this discrepancy is mainly due to localization effects which are note taken into account in our model. Analyzing the influence of the heat sources on the material response shows that the mechanical hysteresis is mainly due to intrinsic dissipation, whereas the thermal response is governed by latent heat. In addition, the variation of the area of the hysteresis loop with respect to the strain rate is discussed. It is found that this variation is not monotonic and reaches a maximum value for a certain value of strain rate.  相似文献   

16.
A thermodynamical model for martensitic phase transitions in shape memory alloys is formulated in this paper in the framework of the Ginzburg-Landau approach to phase transitions. A single order parameter is chosen to represent the austenite parent phase and two mirror related martensite variants. A free energy previously proposed in the literature (Levitas et al. in Phys. Rev. B 66:134206, 2002; Phys. Rev. B 66:134207, 2002; Phys. Rev. B 68:134201, 2003) is employed, in its simplest form, as the main constitutive content of the model. In this paper we treat time-dependent Ginzburg-Landau equation as a balance law on the structure order and we couple it to a energy balance equation, thus allowing to account of heat transfer processes. We obtain a coupled thermo-mechanical problem whose consistency with the Second Law is verified.  相似文献   

17.
The transformation ratchetting of super-elastic NiTi shape memory alloy was observed by the uniaxial stress-controlled cyclic tests [Kang, G.Z., Kan, Q.H., Qian, L.M., Liu, Y.J, 2009a. Ratchetting deformation of super-elastic and shape memory NiTi Alloys. Mech. Mater. 41, 139–153]. It is concluded that the NiTi alloy presents apparent ratchetting behaviour, and the ratchetting is collectively caused by the cyclic accumulation of residual induced-martensite and the transformation-induced plastic deformation (i.e., namely transformation ratchetting). Based on the experimental results, a cyclic constitutive model was constructed in the framework of generalized plasticity [Lubliner, J., Auricchio, F., 1996. Generalized plasticity and shape memory alloys. Int. J. Solids Struct. 33, 991–1003] to describe the transformation ratchetting of super-elastic NiTi alloy. The proposed model simultaneously accounts for the evolutions of residual induced-martensite and transformation-induced plastic strain during the stress-controlled cyclic loading by introducing an internal variable zc, i.e., cumulated induced-martensite volume fraction. The dependence of transformation ratchetting on the applied stress levels and the phase transformation hardening behaviour of the NiTi alloy are also considered in the developed model. The anisotropic phase transformation behaviours of the alloy presented in the tension and compression cases are described by employing a Drucker–Prager-typed transformation surface. It is shown that the simulated results of transformation ratchetting obtained by the proposed model are in good agreement with the corresponding experiments, since the typical features of transformation ratchetting are reasonably captured by the proposed model.  相似文献   

18.
This paper addresses the development of a unified framework for quantifying hysteresis and constitutive nonlinearities inherent to ferroelectric, ferromagnetic and ferroelastic materials. Because the mechanisms which produce hysteresis vary substantially at the microscopic level, it is more natural to initiate model development at the mesoscopic, or lattice, level where the materials share common energy properties along with analogous domain structures. In the first step of the model development, Helmholtz and Gibbs energy relations are combined with Boltzmann theory to construct mesoscopic models which quantify the local average polarization, magnetization and strains in ferroelectric, ferromagnetic and ferroelastic materials. In the second step of the development, stochastic homogenization techniques are invoked to construct unified macroscopic models for nonhomogeneous, polycrystalline compounds exhibiting nonuniform effective fields. The combination of energy analysis and homogenization techniques produces low-order models in which a number of parameters can be correlated with physical attributes of measured data. Furthermore, the development of a unified modeling framework applicable to a broad range of ferroic compounds facilitates material characterization, transducer development, and model-based control design. Attributes of the models are illustrated through comparison with piezoceramic, magnetostrictive and shape memory alloy data and prediction of material behavior.  相似文献   

19.
Some simple models for the macroscopic behavior of shape memory materials whose microstructure can be described as a mixture of two phases are derived on the basis of a free energy and a dissipation function. Keeping a common expression for the free energy, each model is based on a different expression for the dissipation function. Temperature-induced as well as isothermal, adiabatic and convective stress-induced transformations are studied. Attention is paid to closed form solutions, comparison among the models and parameter identification.  相似文献   

20.
A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys(SMAs). Three phases,austenite A, twinned martensite Mtand detwinned martensite M~d, as well as the phase transitions occurring between each pair of phases( A → M~t, M~t→ A, A → M~d,M~d→ A, and M~t→ M~d) are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases(A, M~t, and M~d) and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号