首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
A comparative study of two analytical methodologies for piroxicam quantitation in plasma by off-line and on-line solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) is described. The SPE cartridges contained C8 for both extraction methods. The analytes piroxicam and tenoxican (internal standard) were separated on a C18 column with a mobile phase consisting of acetonitrile:20 mM phosphate buffer pH 3.1 (50:50, v/v) followed by UV detection at 360 nm. The validation of the methods demonstrated good recoveries (over 90%), sensitivity (limits of quantification of 0.05 microgram/ml with on-line SPE and 0.1 microgram/ml with off-line SPE, based on a 100 microliters and 200 microliters sample volume, respectively), accuracy and precision (better than 9.5%). Both methodologies have been used for bioequivalence studies.  相似文献   

2.
A method for the determination of acetone in plasma or urine by high-performance liquid chromatography (HPLC) was developed. Plasma specimens are deproteinized with acetonitrile (1:1, v/v) 2,4-dinitrophenylhydrazine (DNPH) is added to the supernatant or to filtered urine samples, similarly treated with acetonitrile (2:1, v/v) to prevent crystallization of the synthesized phenylhydrazone. An aliquot (20 microliters) of the reaction mixture was subjected to HPLC at ambient temperature using a reversed-phase Pecosphere 3 x 3 C18 column with acetonitrile-water (45:55, v/v) as eluent at a flow-rate of 1 ml/min and detection at 365 nm. Hydroxyacetone and acetoacetate phenylhydrazone derivatives do not interfere. The identification of acetone by its retention time was confirmed by comparison with a laboratory-synthesized acetone DNPH derivative. The concentration of acetone, eluted within 3 min, was determined by the peak-height method. The detection limit was 0.034 mmol/l; the relative standard deviations were less than 5% within run (n = 20) and less than 10% between run (n = 20).  相似文献   

3.
A sensitive reversed-phase high-performance liquid chromatographic (HPLC) technique with ultraviolet detection has been developed to determine the concentration of BRB-I-28 (I), a novel antiarrhythmic agent, in dog plasma and urine. The mobile phase was acetonitrile-methanol-37.5 mM phosphate buffer, pH 6.8-triethylamine (50:50:75:0.1, v/v). The compound was extracted from dog plasma and urine with chloroform after alkalinization with sodium hydroxide. The extraction recovery was 83% from plasma and 84% from urine. Good linearity (r > 0.996) was observed throughout the ranges 0.1-12.0 micrograms/ml (plasma) and 0.1-8.0 micrograms/ml (urine). Intra- and inter-assay variabilities were less than 4%. The lower limit of quantitation was 0.08 microgram/ml in either plasma or urine. HPLC analysis of plasma and urine samples from a dog treated with I has demonstrated that the method was accurate and reproducible.  相似文献   

4.
A high-performance liquid chromatographic method for the analysis of amphotericin B in 25 microliters of serum or plasma is described. The procedure involves the addition of the internal standard, p-nitrobenzyloxyamine, to the sample followed by a precipitation of protein with acetonitrile. The supernatant is directly injected into a chromatograph attached to a reversed-phase mu Bondapak (Waters) column containing C18 packing. The mobile phase is a 60 : 40 mixture of a sodium acetate buffer (10 mM, pH 7.0)--acetonitrile, and we employ a flow-rate of 1.5 ml/min and a detection wavelength of 405 nm. Total analysis time per sample is 10 min. Coefficients of variation were found to be less than 4% for concentrations less than 2 mg/l. Analytical recoveries were between 75 and 80%. No drug or drug metabolite interference was found. The method will be used to study pharmacokinetic and pharmacodynamic data in a pediatric population.  相似文献   

5.
A high-performance liquid chromatographic method for the measurement of bumetanide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol-water-glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5-2000 ng/ml.  相似文献   

6.
A sensitive high-performance liquid chromatographic method for the determination of the enantiomers of atenolol in rat plasma has been developed. Racemic atenolol and practolol (internal standard) were extracted from alkalinized plasma (pH 12) into dichloromethane containing 3% (v/v) heptafluoro-1-butanol, and the organic layer was evaporated. The samples were derivatized with (+)-1-(9-fluorenyl)ethyl chloroformate at pH 8.5 for 30 min. After removal of excess reagent, the diastereomers were extracted into dichloromethane. The diastereomers were separated on a Microspher C18 column (3 microns) with a mobile phase of acetonitrile-sodium acetate buffer (0.01 M, pH 7) (50:50, v/v) at a flow-rate of 0.8 ml/min. Fluorescence detection (lambda ex = 227 nm, lambda em = 310 nm) was used. When 100 microliters of plasma were used, the quantitation limit was 10 ng/ml for the atenolol enantiomers. The assay was applied to measure concentrations of atenolol enantiomers in plasma after intravenous administration of racemic atenolol to rats.  相似文献   

7.
A sensitive and reproducible high-performance liquid chromatographic method was developed to assay ampherotericin B in plasma, blood, urine and various tissue samples. Amphotericin B was isolated from each sample matrix by solid-phase extraction (Bond-Elut). The eluate from Bond-Elut containing amphotericin B was injected onto a reversed-phase C18 column (Waters, mu Bondpak, 10 microns, 300 mm x 3.9 mm I.D.) with a mobile phase of 45% acetonitrile in 2.5 mM Na2EDTA at 1 ml/min. Detection of amphotericin B was by ultraviolet absorption at 382 nm. Blood and tissues were homogenized and extracted with methanol prior to Bond-Elut extraction. The extraction efficiencies of amphotericin B from plasma, blood and tissues were approximately 90, 70 and 75%, respectively. The sensitivity of the assay was less than or equal to 5 ng/ml for plasma, less than or equal to 25 ng/ml for blood, 2.5 ng/ml for urine and 50 ng/g for tissues. The linearity of the assay method was up to 2.5 micrograms/ml for plasma, 5 micrograms/ml for blood, 500 ng/ml for urine and 500 micrograms/g for tissues. The assay was reproducible with an intra-day coefficient of variation (C.V., n = 3) of less than 5% in general for plasma, blood and tissues. The inter-day C.V. of the assay was less than 5% for plasma (n = 5), less than 10% for blood (n = 4) and less than 5% for tissues (n = 3). The overall variability in the urine assay was generally less than 10%. This method has demonstrated significant improvement in the sensitivity and reproducibility in assaying amphotericin B in plasma and especially in blood, urine and tissues. We have employed this assay to compare the pharmacokinetic and tissue distribution profiles of amphotericin B in rats and dogs following administration of Fungizone and ABCD (amphotericin B-cholesteryl sulfate colloidal dispersion), a lipid-based dosage form. In addition, the assay method for plasma and urine samples can also be applied to pharmacokinetics studies of amphotericin B in man.  相似文献   

8.
A simple and selective method for the determination of sulphamethazine (SMT) and its metabolite, N4-acetylsulphamethazine (N4-AcSMT), in meat by high-performance liquid chromatography (HPLC) with photodiode-array detection was developed. The drugs were extracted from meat with 0.2% metaphosphoric acid-methanol (6:4), followed by a Bond-Elut C18 clean-up procedure. The HPLC separation was carried out on a Supersphere RP-18e column (125 X 4.0 mm I.D.) using 0.05 M sodium dihydrogenphosphate (pH 4.5)-acetonitrile (8:2) as the mobile phase at a flow-rate of 0.5 ml/min, and monitored with a photodiode-array detector. The recoveries of SMT and N4-AcSMT from meat fortified at 0.5 micrograms/g were 90.1-93.3 and 93.0-94.4%, respectively, with coefficients of variation of 1.9-3.2 and 1.5-2.7%. The limits of detection were 0.02 micrograms/g for each drug. SMT was found in ten samples of imported meat (12.5%) at levels ranging from 0.05 to 1.05 micrograms/g.  相似文献   

9.
A stereoselective high-performance liquid chromatographic method that utilizes fluorescence detection was developed for the selective and sensitive quantification of R(-)- and S(+)-enantiomers of MK-571 (1), a potent and specific leukotriene D4 antagonist, in human plasma. Racemic 1 was isolated from the acidified plasma using solid-phase extraction and the resulting residue was successfully reacted with isobutyl chloroformate and R(+)-1-(1-naphthyl)ethylamine in triethylamine-acetonitrile medium to form the diastereomer of each enantiomer. A structural analogue of 1 was used as internal standard. The derivatized sample was dissolved in 1,1,2-trichlorotrifluoroethane and an aliquot was chromatographed on a (R)-urea chiral column using a mobile phase containing 89% triethylamine-pentane (3:1000, v/v), 10% 2-propanol, and 1% acetonitrile at a flow-rate of 1.5 ml/min. The fluorescence response (excitation wavelength, 350 nm; emission wavelength, 410 nm) was linear (r2 greater than 0.999) for concentrations of enantiomers of 1 from 0.05 micrograms/ml, the lowest quantitation limit, up to 2.5 micrograms/ml. Intra-day coefficients of variation at 0.05 microgram/ml were 2.4% for the R(-)-isomer and 2.0% for S(+)-isomer. The corresponding inter-day coefficients of variation for R(-)- and S(+)-1 were 2.6 and 3.6%, respectively. The utility of the methodology was established by analysis of plasma samples from male volunteers receiving single intravenous and oral doses of racemic 1.  相似文献   

10.
A rapid, sensitive, stereospecific reversed-phase high-performance liquid chromatographic method was developed for simultaneous quantitation of ketoprofen enantiomers, probenecid and their conjugates in biological fluids. Following addition of the internal standard, indoprofen, the constituents were extracted into isooctane-isopropanol (95:5), water-washed, extracted with chloroform, then evaporated and the residue sequentially derivatized with ethyl chloroformate and L-leucinamide hydrochloride. The formed diastereomers were chromatographed on a reversed-phase column with a mobile phase of 0.06 M KH2PO4-acetonitrile-triethylamine (65:35:0.1) at a flow-rate of 1 ml/min and a detection wavelength of 275 nm. The minimum quantifiable concentration was 0.5 micrograms/ml in 100 microliters of rat plasma and urine samples. The intra- and inter-day coefficients of variation for this method are less than 10%. The assay is successfully applied to a pharmacokinetic study. The simultaneous analysis of probenecid with several other non-steroidal anti-inflammatory drugs was also successful.  相似文献   

11.
A simple, accurate and precise isocratic reversed-phase high-performance liquid chromatographic method was developed and validated for the determination of p-chloronitrobenzene (p-CNB) in rat plasma. A plasma sample was deproteinized with methanol containing the internal standard (p-bromonitrobenzene). The resulting methanol eluate obtained after centrifugation was filtered and injected into a high-performance liquid chromatograph (50 microliters each). A column packed with 5 microns octadecylsilane (ODS) spherical particles was used with isocratic elution of methanol-water (45:55, v/v) at a flow-rate of 1.0 ml/min. The compounds were detected by ultraviolet absorbance at 280 nm. The retention times of p-CNB and the internal standard were 12.5 and 15.5 min, respectively, at a column oven temperature of 30 degrees C. The results were linear from 0.05 to 100 micrograms/ml (r = 0.999), and the detection limit was 0.01 microgram/ml. The relative error and the coefficient of variation on replicate assays were less than 7 and 10%, respectively, for all concentrations studied. The overall recoveries of p-CNB were between 97 and 105%. Plasma samples could be stored for up to one month at -20 degrees C.  相似文献   

12.
A sensitive, rapid and robust HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the quantification of sotalol in rat plasma. Plasma samples were precipitated with acetonitrile before analysis. The chromatographic separation was performed on an Atlantis hydrophilic interaction liquid chromatography Silica column (50 × 2.1 mm, 3 µm) with a gradient mobile phase of 10 mm NH4COOH (containing 0.2% of formic acid) as buffer A and acetonitrile as mobile phase B. Sotalol (m/z 273.2 → 255.1) and atenolol (the internal standard, IS, m/z 267.2 → 190.1) were monitored under positive ionization mode with 5500 QTRAP. Retention time of sotalol and the IS were 2.69 and 3.43 min, respectively. The linear range was 5–500 nm based on the analysis of 0.1 mL of plasma. The intrabatch precision ranged from 1.2 to 6.1%, and the inter‐batch precision was from 3.3 to 6.5%. The coefficient of variation of IS‐normalized matrix factor was 7.6%. Experiments for stability were performed and the analyte was sufficiently stable. A run time of 6 min for each injection made it possible to analyze a high throughput of plasma samples. The assay was successfully applied to the determination of sotalol in rat plasma after a micro‐dose oral administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Lamotrigine is an investigational anticonsulvant drug undergoing clinical trials. A simultaneous assay was developed to quantitate lamotrigine and its major metabolite, lamotrigine 2-N-glucuronide, from guinea pig whole blood. The extraction procedure and reversed-phase high-performance liquid chromatographic (HPLC) assay employed sodium dodecylsulfate (SDS) as an ion-pairing reagent to selectively separate lamotrigine and lamotrigine 2-N-glucuronide from endogenous blood components, other anti-convulsant drugs, and their metabolites. The mobile phase was composed of acetonitrile-50 mM phosphoric acid (pH 2.2) containing 10 mM SDS (33:67, v/v), and components were detected at 277 nm. The total coefficients of variance (C.V.) for the blood assay were less than or equal to 9.4% for lamotrigine (0.25-20.0 micrograms/ml) and less than or equal to 13.4% for the glucuronide metabolite (0.25-10.0 micrograms/ml). Separate assays for lamotrigine and its glucuronide in urine were developed. In order to quantitate low levels of lamotrigine in guinea pig urine, lamotrigine was extracted with tert.-butyl methyl ether-ethyl acetate (1:1). The total C.V. for lamotrigine quantitation in urine was less than or equal to 7.5% (0.10-10.0 micrograms/ml). For the determination of lamotrigine 2-N-glucuronide, urine was diluted with an SDS-phosphoric acid buffer (1:4) and injected directly onto the HPLC system, total C.V. less than or equal to 4.2% (0.5-50 micrograms/ml).  相似文献   

14.
Determination of malotilate and its metabolites in plasma and urine   总被引:1,自引:0,他引:1  
A method for the determination of malotilate (I), the corresponding monocarboxylic acid (II) and its decarboxylated product (III) in plasma is described. Plasma was extracted with chloroform spiked with internal standard. The residue, dissolved in methanol, was chromatographed on a reversed-phase column with a mobile phase of 60% acetonitrile and 1% acetic acid in water. The sensitivity limit for I, II and III was 50, 25 and 100 ng/ml of plasma, respectively. Compound I in the same plasma extract was also analysed by gas chromatography--electron-impact mass spectrometry. The base peaks m/z 160 for I and m/z 162 for internal standard (IV) were monitored; the sensitivity limit for I was 2.5 ng/ml of plasma. The determination of the metabolites of I, II and its conjugate (V), and isopropyl-hydrogen malonate (VI) in urine by high-performance liquid chromatography is also described. The limit of quantification for VI was 2.0 micrograms/ml, and the overall coefficient of variation of VI was 4.7%. The limit of quantification for II in urine was 0.5 micrograms/ml and that for V was 1.0 micrograms/ml as total II (II + V). The overall precision of the method was satisfactory. The method was used to determine plasma and urine concentrations in four dogs orally dosed with 100, 200 or 400 mg of malotilate.  相似文献   

15.
A rapid, sensitive and accurate high-performance liquid chromatographic method for the simultaneous quantitation of phenobarbitone, phenytoin, carbamazepine and carbamazepine-10,11-epoxide in saliva is described. Only small volumes of saliva (100 microliters) are required. Separation of the drugs is achieved by reversed-phase chromatography on a Nova-Pak C18 column, with a mobile phase of acetonitrile-phosphate buffer at a flow-rate of 2.0 ml/min. Detection is effected by ultra-violet absorption at 215 nm. The total run time is under 12.5 min per assay. A precipitation but no extraction step is involved, simplifying the assay method. Salivary concentrations in the range 0.25-25 micrograms/ml for carbamazepine, 0.5-20 micrograms/ml for phenytoin and phenobarbitone and 0.4-20 micrograms/ml for carbamazepine-10,11-epoxide can be measured. Recovery varies from 94 to 108%. The method has been used for routine measurements of anticonvulsants in saliva collected daily from patients with intractable epilepsy.  相似文献   

16.
A liquid chromatographic method using a solid-phase extraction procedure for the quantification of sotalol in plasma and urine is described. Sotalol is eluted from an extraction column with ethyl acetate-acetonitrile (1:2) and, after separation by reversed-phase high-performance liquid chromatography on a mu Bondapak C18 column, is quantified by fluorescence detection at excitation and emission wavelengths of 240 and 310 nm, respectively. The method has been demonstrated to be linear over the concentration ranges 10-6000 ng/ml in plasma and 0.5-100 micrograms/ml in urine. Mean inter-assay accuracy of the method for plasma ranged from 93 to 100% and for urine from 102 to 114%; precision ranged from 0.5 to 1.6% for plasma over a concentration range of 200-4000 ng/ml and for urine from 0.7 to 2.0% at concentrations of 2-50 micrograms/ml. Mass spectrometry confirmed the presence of sotalol in isolated chromatographic fractions of plasma and urine extracts from subjects given sotalol orally.  相似文献   

17.
Kahalalide F (KF) is a novel cyclic depsipeptide anticancer drug, which has shown anticancer activity both in vitro and in vivo especially against human prostate cancer cell lines. To characterize the pharmacokinetics of KF during a phase I clinical trial in patients with androgen refractory prostate cancer, a method was developed and validated for the quantitative analysis of KF in human plasma using high-performance liquid chromatography (HPLC) coupled to positive electrospray ionization tandem mass spectrometry (ESI-MS/MS). Microbore reversed-phase liquid chromatography (LC) performed with mobile phases containing trifluoroacetic acid, an additive commonly used for separating peptides, resulted in substantial suppression of the signal for KF on ESI-MS/MS. An alternative approach employing a basic mobile phase provided an excellent response for KF when detected in the positive ion mode. Plasma samples were prepared for LC MS/MS by solid-phase extraction on C(18) cartridges. The LC separation was performed on a Zorbax Extend C(18) column (150 x 2.1 mm i.d., particle size 5 micro m) with acetonitrile -10 mM aqueous ammonia (85 : 15, v/v) as the mobile phase, at a flow-rate of 0.20 ml min(-1). A butyric acid analogue of KF was used as the internal standard. The lower limit of quantitation (LLQ) using a 500 micro l sample volume was 1 ng ml(-1) and the linear dynamic range extended to 1000 ng ml(-1). The inter-assay accuracy of the assay was -15.1% at the LLQ and between -2.68 and -9.05% for quality control solutions ranging in concentration from 2.24 to 715 ng ml(-1). The inter-assay precision was 9.91% or better at these concentrations. The analyte was stable in plasma under all relevant conditions evaluated and for a period of 16 h after reconstituting plasma extracts for LC analysis at ambient temperature.  相似文献   

18.
The performance of isocratic separations of 11 pollutant phenols (PP) using monolithic (Chromolith RP-18e) and conventional reversed-phase 5 microm (Luna and Purospher C18) and 4 microm (Synergi C12) particulate size columns, selected from high purity silica materials, has been compared. The separations have been optimized based on a previously optimized separation in which a reversed-phase C18 Luna column and acetonitrile as organic modifier were used, allowing the separation of all phenols tested in 23 min. The optimization process was carried out for each column by studying the effect of the mobile phase (acetonitrile as organic modifier, pH, flow-rate) on phenols separation. Under the optimized separation conditions, all phenols were separated in less than 23 min for all columns tested. Asymmetry factors were further evaluated and used to estimate column efficiency using the Dorsey-Foley equation. The efficiency and asymmetry factors were lower for Chromolith than for Purospher and Luna columns respectively. The Chromolith column was finally selected, due to its lower flow resistance, analysis time and good efficiency and asymmetry factors. The PPs separation was achieved in 3 min. The asymmetry factors were in the range 0.9-1.5 using 50mM acetate buffer (pH = 5.25)-ACN (64:36, v/v) as mobile phase, T=45 degrees C and 4.0 ml min(-1) flow-rate.  相似文献   

19.
A high-performance liquid chromatographic method was developed for the simultaneous determination of haloperidol and reduced haloperidol in human plasma, urine and rat tissue homogenates using bromperidol as an internal standard. The method involved extraction followed by injection of 50-80 microliters of the aqueous layer onto a C18 reversed-phase column. The mobile phase was 0.5 M phosphate buffer-acetonitrile-methanol (58:31:11, v/v/v) and the flow-rate was 0.6 ml/min. The column effluent was monitored by ultraviolet detection at 214 nm. The retention times for reduced haloperidol, haloperidol and bromperidol were 5.4, 7.2 and 8.4 min, respectively. The detection limits for haloperidol and reduced haloperidol in human plasma were both 0.5 ng/ml, and the corresponding values in human urine were both 5 ng/ml. The coefficients of variation of the assay were generally low (below 10.7%) for plasma, urine, blood and tissue homogenates. No interferences from endogenous substances or any drug tested were found.  相似文献   

20.
A rapid and sensitive analytical procedure is described for the simultaneous measurement of tolmetin (T), tolmetin glucuronide (1 beta-TG) and the isomers of tolmetin glucuronide in plasma and urine. A reversed-phase liquid chromatographic system is used with an ion-pairing mobile phase of methanol-tetrabutylammonium hydrogensulfate buffered to pH 4.5 and kept at a constant temperature of 50 degrees C. Detection is by UV at 313 nm. Plasma (0.5 ml) and urine (0.1 ml) are collected in pre-cooled containers and immediately adjusted to pH 3.0 to minimize TG isomerization and hydrolysis. Samples are then deproteinated with acetonitrile, the supernatant is evaporated to dryness and reconstituted in an acetate buffer (pH 4.5), and 50 microliters are injected onto the system. Using zomepirac as the internal standard, the measurable, linear concentration ranges are 0.05-50 micrograms/ml for T in plasma and 0.025-50 micrograms/ml for T in urine. Chromatographic peaks representing T,1 beta-TG and three isomers of TG were identified, all with retention times less than 10 min. The need for special handling of biological samples is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号