首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 431 毫秒
1.
Until now, although there are many examples of studying the magnetic properties of Schiff base binuclear lanthanide complexes, the relationship between the structure and magnetic properties of the complexes still is worth further investigation in order to improve the magnetic properties of Schiff base lanthanide complexes. In this work, we successfully obtained two series of binuclear Ln complexes by in situ reaction of 4-diethylaminosalicylaldehyde, benzoic hydrazide and different lanthanide salts at 80°C under solvothermal conditions, namely, [Ln2(L)3(NO3)3]·CH3CN·CH3OH·H2O [Ln = Dy ( 1 ), Ho ( 2 ), Gd ( 3 ) L = deprotonated 4-diethylamino salicylaldehyde benzoylhydrazine], [Ln2(L)4(CH3COO)]CH3COO·CH3CN [Ln = Dy ( 4 ), Ho ( 5 ), Gd ( 6 )]. The complex 1 contains three Schiff base ligands L, two Dy (III) ions, and three NO3. The ligand H1L is formed by in situ Schiff base reaction with 4-diethylaminosalicylaldehyde and benzoic hydrazide with the participation of Ln (NO3)3. When replacing Ln (NO3)3 with Ln (OAc)3, obtained three μ2-OAc bridged binuclear Ln (III) complexes. The magnetic study showed that complex 4 exhibits field-induced single-molecule magnet (SMM) behavior while complex 1 does not show any SMMs behavior. In addition, we have studied the magnetocaloric effect of complexes 3 and 6 , their maximum −ΔSm values are 21.37 J kg−1 K−1 and 15.32 J kg−1 K−1, respectively, under ΔH = 7 T and T = 2 K.  相似文献   

2.
A synthetic method for a new unsymmetrical Schiff base and its Ln (III) complexes including multi groups is reported. The complexes are characterized by elemental analysis, IR spectra, 1H and13C NMR, especially 2D-COSY 1H, 1H NMR spectra. The general formula of the obtained complexes is [Ln3(TBLY)(NO3)3]\sdnH2O (Ln = La, n = 3; Ln = Nd, n=5; Ln = Gd, Dy, Yb, Y, n = 7), where TBLY = tetraglycol aldehyde-2,4-dihydroxy benzaldehyde bis-lysine Schiff base. In addition, the evidence for existence of group is supported by the AM1 method. The complexes obtained may be used as a catalyst. Conversion rate of 80% with the viscosity-average molecular weight 220000 for the polymerization of methyl methacrylate (MMA) without addition of any cocatalyst has been obtained.  相似文献   

3.
A series of novel heteronuclear Ln(III)-CU(II) complexes with noncyclic polyether-amino acid Schiff base were synthesized. The general formula is (LnCu2(H2TALY) (NO3)5] (NO3)2·nH2O (Ln= La, Nd, Sm, Gd,n = 4; Ln = Yb, Y,n = 3), where H2TALY = tetraglycol aldehyde bis-lysine Schiff base. It is the first time to report the synthetic method for this new Cu(II) complexes and Ln(III)-Cu(II) heteronuclear complexes. The complexes were characterized by elemental analysis, IR spectra. TG-DTA, magnetic susceptibility, and especially by a 500 MHz NMR spectrometer for 2D-COSY NMR. Coordination mechanism and structures of complexes have been suggested as well. Of particular interest is the potential that the novel complexes obtained may be used as a catalyst. which prompted us to investigate them. It shows 100% conversion with the viscosity-average molecular weight 120 000 for the polymerization of methyl methacrylate (MMA) without addition of any cocatalyst. Furthermore, the complexes with such aliphatic Schiff bases can be used as a good catalyst, which has been confirmed and discussed here. They may be a new kind of catalyst system with the above speciality. Project supported by the National Natural Science Foundation of China (Grant No. 29671026) and Natural Science Foundation of Zhejiang Province (Grant No. 296062) and the Laboratory of MRAMP (Grant No. 971502).  相似文献   

4.
Six novel Ln(III) Schiff base complexes were synthesized using rare earth metals with threonine and 5‐bromosalicylaldehyde, namely Pr(III), Sm(III), Gd(III), Tb(III), Er(III) and Yb(III) Schiff bases. These complexes were characterized using elemental analysis, molar conductivity, Fourier transform infrared and UV–visible spectroscopies, and thermogravimetry–differential thermal analysis. The general formula of the complexes is [Ln(L)(NO3)2(H2O)].NO3 (L = Schiff base ligand). The spectroscopic data reveal that the Schiff base ligand behaves as a tridentate ligand with ONO donor atoms sequencing towards the central metal ion. An investigation of fluorescence properties of the Sm(III), Er(III) and Tb(III) complexes shows that the Ln(III) ions can be sensitized efficiently by the ligand to some extent. Antimicrobial activity testing indicates that all six complexes exhibit antibacterial and antifungal ability against microbes with broad antimicrobial spectra. In addition, the antioxidant properties of the complexes were also screened. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Some new Schiff bases derivates from 2-furaldehyde and phenylenediamines (L1-3) and their complexes with lanthanum (La), samarium (Sm), gadolinium (Gd) and erbium (Er) have been synthesized. These complexes with general formula [Ln(L1-3)2(NO3)2]NO3·nH2O (Ln = La, Sm, Gd, Er) were characterized by elemental analysis, UV-Vis, FT-IR and fluorescence spectroscopy, molar conductivity and thermal analysis. The metallic ions were found to be eight coordinated. The emission spectra of these complexes indicate the typical luminescence characteristics of the Sm(III), La(III), Er(III) and Gd(III) ions.  相似文献   

6.
Nine novel heteronuclear complexes of Ln(III)-Cu(II) with salicylidene tetraethylene glycol diamine (SALTTA) have been synthesized and characterized. They have the general formulae [LnCu2(SALTTA)2(NO3)3](NO3)4·3H2O (Ln=La, Pr, Nd, Sm) and [LnCu3(SALTTA)3(NO3)5]-(NO3)4·4H2O (Ln=Gd, Tb, Er, Yb, Y). The IR spectra show that vC=N in the Ln(III)-Cu(II) heteronuclear complexes are splitted up into two peaks with a far distance. It has been confirmed that oxygen atoms in oxyethylene of the ligand are not all coordinated to the central metal ions by both IR and NMR methods.  相似文献   

7.
Ten new rare earth complexes with Schiff base (HL) derived from phthalaldehyde with two-CHO groups and lysine, which has unsymmetrical α-and ε--NH2 groups, were synthesized and characterized by elemental analysis, TG-DTA analysis, UV-Vis, IR, and 1H NMR spectra. They were confirmed to be as LnL2(NO3)·4H2O (Ln=La, Pr, Nd, Sm, Y) and LnL2(NO3)·3H2O (Ln=Gd, Tb, Dy, Er, Yb), respectively. Furthermore, their coordination mechanism, spectral properties and probable molecular structures were also discussed. __________ Translated from Journal of Zhejiang University (Science Edition), 2005, 32 (5) (in Chinese)  相似文献   

8.
The synthesis and characterization of lanthanide(III) complexes with the Schiff-base hydrazone, o-hydroxyacetophenone-7-chloro-4-quinoline, (HL) are reported. The complexes were characterized by different physicochemical methods: mass spectrometry, 1H NMR, 13C NMR, and IR, UV-visible, molar conductance and magnetic studies. They have the stoichiometry [Ln(L)2(NO3)]·nH2O where Ln = La(III), Pr(III), Nd(II), Sm(III), Eu(III) and n = 1–3. The spectra of the complexes were interpreted by comparison with the spectrum of the free ligand. The Schiff-base ligand and its metal complexes were tested against one stain Gram +ve bacteria (Staphylococcus aureus), Gram ?ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited high antimicrobial activities  相似文献   

9.
The composition of mixed-ligand complexes of cerium (III) and europium (III) acetates and pivalates with monoethanolamine (MEA) depends on the synthesis conditions and the nature of carboxylate ligand. We prepared solid complexes [Ln(Piv)3(MEA) x ], where Ln = Ce, Eu; HPiv-2,2-dimethylpropionic (pivalic) acid; x = 1, 1.5, and gel-like hydroxocomplexes [Ln(Carb) nxy ,(NO3) x (OH) y (MEA) w (H2O) z ], where Ln = Ce, n = 4; Ln = Eu, n = 3; HCarb is acetic acid (HAcet) or HPiv. The values of the coefficients x, y, w, and z depend on the synthesis conditions and heat treatment. Prepared compounds were characterized by IR and 1H NMR spectroscopies, elemental and thermal analyses, and MALDI-MS. The ESI-MS method was used to characterize the processes occurring in the solutions.  相似文献   

10.
We report a series of 3d–4f complexes {Ln2Cu3(H3L)2Xn} (X=OAc?, Ln=Gd, Tb or X=NO3?, Ln=Gd, Tb, Dy, Ho, Er) using the 2,2′‐(propane‐1,3‐diyldiimino)bis[2‐(hydroxylmethyl)propane‐1,3‐diol] (H6L) pro‐ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2Cu3(H3L)2Xn} complexes is seen by changing the auxiliary ligands (X=OAc? for NO3?). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu‐based single‐molecule magnet. Ab initio CASSCF calculations performed on mononuclear TbIII models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the TbIII coordination environment (C4v versus Cs).  相似文献   

11.
Two series of new lanthanide(III) complexes of the type [Ln(HSAT)2(H2O)3Cl3] and [Ln(HSAT)2(NO3)3], where Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Tm, Yb, or Lu, and HSAT = 2-(N-salicylideneamino)-3-carboxyethyl-4,5,6,7-tetrahydrobenzo[b]thiophene, are synthesized by the reaction of LnCl3 or Ln(NO3)3 with the title ligand in ethanol. The complexes are characterized by elemental analysis, magnetic moment values, molar conductivity, IR, UV-Vis, and 1H NMR spectral data. Two selected complexes are subject to thermogravimetric analysis, and their kinetic parameters are estimated using Coats-Redfern equation. The complex [La(HSAT)2(NO3)3] underwent facile transesterification when refluxed in methanol. The ligand and some selected complexes are screened for their antimicrobial properties. Antimicrobial activities of the ligand increase on coordination with the metal ion. The text was submitted by the authors in English.  相似文献   

12.
The thermal decomposition of lanthanide complexes, with a general formula: [LnL(NO3)2](NO3), where Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, and Er; and L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand, was studied by thermogravimetric (TG) and derivative thermogravimetric (DTG) techniques. The TG and DTG data indicated that all complexes are thermostable up to 398 K. The thermal decomposition of all Ln(III) complexes was a two-stage process and the final residues were Ln2O3 (Ln = La, Nd, Sm, Gd, Dy, Er), Tb4O7, and Pr6 O11. The activation energies of thermal decomposition of the complexes were calculated from analysis of the TG-DTG curves using the Kissinger, Friedman, and Flynn-Well-Ozawa methods.  相似文献   

13.
Six novel μ-oxamido binuclear complexes, namely Cu(axpn)Ln(L)2(ClO4)3 (Ln: Eu, Gd, Tb, Nd, Ho, Er), where oxpn is N,N'-bis(3-aminopropyl) oxamido, L denotes 5-nitro,10-phenanthroline (abbreviated as NO2-phen), have been synthesized and characterised. The magnetic susceptibility of complexes Cu(oxpn)Gd(NO2-phen)2(ClO4)3.2H2O was measured over the 4–300 K and the observed data were successfully simulated by equation based on spin Hamiltonian operator (H = -2J1 · S2), giving the exchange integral J(Cu-Gd)=-1.62 cm?1. This indicates a weak antiferromagnetic interaction between the Cu(II) and Gd(III) ions.  相似文献   

14.
Treatment of Ln(NO3)3?nH2O with 1 or 2 equiv 2,2′‐bipyrimidine (BPM) in dry THF readily afforded the monometallic complexes [Ln(NO3)3(bpm)2] (Ln=Eu, Gd, Dy, Tm) or [Ln(NO3)3(bpm)2]?THF (Ln=Eu, Tb, Er, Yb) after recrystallization from MeOH or THF, respectively. Reactions with nitrate salts of the larger lanthanide ions (Ln=Ce, Nd, Sm) yielded one of two distinct monometallic complexes, depending on the recrystallization solvent: [Ln(NO3)3(bpm)2]?THF (Ln=Nd, Sm) from THF, or [Ln(NO3)3(bpm)(MeOH)2]?MeOH (Ln=Ce, Nd, Sm) from MeOH. Treatment of UO2(NO3)2?6H2O with 1 equiv BPM in THF afforded the monoadduct [UO2(NO3)2(bpm)] after recrystallization from MeOH. The complexes were characterized by their crystal structure. Solid‐state luminescence measurements on these monometallic complexes showed that BPM is an efficient sensitizer of the luminescence of both the lanthanide and the uranyl ions emitting visible light, as well as of the YbIII ion emitting in the near‐IR. For Tb, Dy, Eu, and Yb complexes, energy transfer was quite efficient, resulting in quantum yields of 80.0, 5.1, 70.0, and 0.8 %, respectively. All these complexes in the solid state were stable in air.  相似文献   

15.
《Polyhedron》1999,18(8-9):1247-1251
One new diferrocene Schiff base was prepared by condensing 1′-formyl[(2,2-diferrocenyl)propane] with isonictinoyl hydrazine. 1′-formyl[(2,2-diferrocenyl)propane]isonicotinoyl hydrazone (HL) and its chelates with lanthanide ions, Ln(HL)2Cl3(H2O)n (Ln=La, Dy, Yb, Gd, Sm, Nd; n=1–5.) were prepared, isolated and characterized by elemental analysis, IR and 1H NMR spectra. In these chelates the ligand coordinates to lanthanide ions in the keto form, and some chloride ions and water molecules participate in coordination to the metal ion. The redox properties of the ligand and its complexes were investigated using cyclic voltammetric method. Both the ligand and its lanthanide complexes exhibit two distinct pairs of redox peaks displaying electrochemical characteristics of multi-component system.  相似文献   

16.
The interaction of lanthanide(III) ions with two N3O3-macrocycles, L1 and L2, derived from 2,6-bis(2-formylphenoxymethyl)pyridine and 1,2-diaminoethane has been investigated. Schiff-base macrocyclic lanthanide(III) complexes LnL1(NO3)3 · xH2O (Ln = Nd, Sm, Eu or Lu) have been prepared by direct reaction of L1 and the appropriate hydrated lanthanide nitrate. The direct reaction between the diamine macrocycle L2 and the hydrated lanthanide(III) nitrates yields complexes LnL2(NO3)3· H2O only for Ln = Dy or Lu. The reduction of the Schiff-base macrocycle decreases the complexation capacity of the ligand towards the Ln(III) ions. The complexes have been characterised by elemental analysis, molar conductivity data, FAB mass spectrometry, IR and, in the case of the lutetium complexes, 1H NMR spectroscopy.  相似文献   

17.
Rare-earth complexes of the general formula [Ln(H2L1)2(NO3)3] [Ln = Gd (1), Ho (2) or Nd (3)] were prepared from an o-vanillin derived Schiff base ligand, 2-((E)-(1-hydroxy-2-methylpropan-2-ylimino)methyl)-6-methoxyphenol (H2L1). The single-crystal X-ray diffraction studies and SHAPE analyses of the Gd(III) and Ho(III) complexes show that the complexes are ten-coordinate and exhibit distorted tetradecahedron geometries. The phenolate oxygen-bridged dinuclear complex, [Ce2(H2L1)(ovan)3(NO3)3] (4, ovan = monodeprotonated o-vanillin), was obtained from the reaction of Ce(NO3)3?6H2O with H2L1. X-ray analysis revealed that hydrolysis of H2L1 occurred to yield o-vanillin, which bridged two cerium atoms with the Ce?Ce distance equal to 3.8232(6) Å. The Ce(III) ions are both ten-coordinate, but have different coordination environments, showing tetradecahedron and staggered dodecahedron geometries, respectively. With proton migration occurring from the phenol group to the imine function, complexation of the lanthanides to the ligand gives the Schiff base a zwitterionic phenoxo-iminium form.  相似文献   

18.
Complexes between the heavier lanthanoid nitrates Ln(NO3)3 and 15-crown-5 ( 1 ) and 18-crown-6 ( 2 ) ethers were isolated and characterized. Both 1:1 and 4:3 complexes are formed with each Ln(III) ion, except in the case of Gd and 2 . The thermal transformation of the 1:1 complexes into the corresponding 4:3 complexes was studied by thermogravimetry and by DSC, X-ray and vibrational data provide information about the structure of these complexes. The interaction between Ln(III) ions and ligands 1 and 2 in non-aqueous solutions is discussed on the basis of conductometric, fluorescence, UV./VIS. and 1H-NMR. data. Only 1:1 complexes of 2 formed in solution and their formation constants range from logKf = 4.4 (Ln = La) to 2.4 (Ln = Yb); for Eu, Kf of the 15-crown-5 and 18-crown-6 ether complexes are of the same order of magnitude. For La, Pr, Nd, Eu, Yb, a variable temperature NMR. study gave some indications about the chemical exchanges in solution. The factors which determine the stoichiometry of the complexes are discussed.  相似文献   

19.
A novel photoluminescent room‐temperature liquid‐crystalline salicylaldimine Schiff base with a short alkoxy substituent and a series of lanthanide(III) complexes of the type [Ln(LH)3(NO3)3] (Ln=La, Pr, Sm, Gd, Tb, Dy; LH=(E)‐5‐(hexyloxy)‐2‐ [{2‐(2‐hydroxyethylamino)ethylimino]methyl}phenol) have been synthesized and characterized by FTIR, 1H and 13C NMR, UV/Vis, and FAB‐MS analyses. The ligand coordinates to the metal ions in its zwitterionic form. The thermal behavior of the compounds was investigated by polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). The ligand exhibits an enantiotropic hexagonal columnar (Colh) mesophase at room temperature and the complexes show an enantiotropic lamellar columnar (ColL) phase at around 120 °C with high thermal stability. Based on XRD results, different space‐filling models have been proposed for the ligand and complexes to account for the columnar mesomorphism. The ligand exhibits intense blue emission both in solution and in the condensed state. The most intense emissions were observed for the samarium and terbium complexes, with the samarium complex glowing with a bright‐orange light (ca. 560–644 nm) and the terbium complex emitting green light (ca. 490–622 nm) upon UV irradiation. DFT calculations performed by using the DMol3 program at the BLYP/DNP level of theory revealed a nine‐coordinate structure for the lanthanide complexes.  相似文献   

20.
A series of liquid-crystalline lanthanide complexes with 1-(4-dodecyloxyphenyl)-3-octadecylamino-2-propene-1-one (HL), which is substituted β-enaminoketone, with the composition Ln(HL)3(NO3)3 (Ln = La, Nd, Gd, Tb, Dy, Ho, and Er) is synthesized. For the most part of the synthesized complexes, the magnetic susceptibility anisotropy (Δχmin) is shown to be one to two orders higher than Δχ of the “classical” organic liquid crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号