首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A simple synthesis of furo[2,3-c]pyridine and its 2- and 3-methyl derivatives from ethyl 3-hydroxyisonicotinate ( 2 ) is described. The hydroxy ester 2 was O-alkylated with ethyl bromoacetate or ethyl 2-bromopropionate to give the diester 3a or 3b . Cyclization of compound 3a afforded ethyl 3-hydroxyfuro [2,3-c]pyridine-2-carboxylate ( 4 ) which was hydrolyzed and decarboxylated to give furo[2,3-c]pyridin-3(2H)-one ( 5a ). Cyclization of 3b gave the 2-methyl derivative 5b . Reduction of 5a and 5b with sodium borohydride yielded the corresponding hydroxy derivative 6a and 6b , respectively, which were dehydrated with phosphoric acid to give furo[2,3-c]pyridine ( 7a ) and its 2-methyl derivative 7b . 4-Acetylpyridin-3-ol ( 8 ) was O-alkylated with ethyl bromoacetate to give ethyl 2-(4-acetyl-3-pyridyloxy) acetate ( 9 ). Saponification of compound 9 , and the subsequent intramolecular Perkin reaction gave 3-methylfuro[2,3-c]pyridine ( 10 ). Cyclization of 9 with sodium ethoxide gave 3-methylfuro[2,3-c]pyridine-2-carboxylic acid, which in turn was decarboxylated to give compound 10 .  相似文献   

2.
Reaction of 2-formyl-2-(2,3-O-isopropylidene-5-O-trityl-D-ribofuranosyl)acetonitrile (VII) with semicarbazide hydrochloride followed by sodium ethoxide treatment afforded an α,β-mixture of 3-amino-2N-carbamoyl-4-(2,3-O-isopropylidene-5-O-trityl-D-ribofuranosyl)pyrazole (IX). Conversion of IX to 4-oxo-8-(2,3-O-isopropylidene-5-O-trityl-D-ribofuranosyl)-3H-pyrazolo[1,5-a]-1,3,5-triazine (XIII) was achieved by treatment of IX with ethylorthoformate. The β-isomer IXb gave only the β-isomer XIIIb, and the α-isomer IXa was converted exclusively into the α-isomer XIIIa. Upon deprotection with 3% n-butanolic hydrogen chloride, both IXa and IXb gave the same mixture of the α- and β-isomers of 3-amino-2N-carbamoyl-4-(D-ribosyl)pyrazole, which were separated by chromatography. The syntheses of the hitherto unknown compounds, 3-amino-2N-carbamoylpyrazole (IVa) and its 4-methyl analog (IVb) are also reported. Experimental details of the synthesis of 3-amino-4-(2,3-O-isopropylidene-5-O-trityl-β-D-ribofuranosyl)pyrazole (XIIb), an important intermediate for “purine-like” C-nucleosides, are also described.  相似文献   

3.
ABSTRACT

The behavior of 3,4- and 4,6-cyclic sulfates derived from benzyl 2,6- and 2,3-di-O-benzyl-β-D-galactopyranosides toward hydrolysis has been studied using aqueous sodium hydroxide under various conditions. Starting from benzyl 2,6-di-O-benzyl-3,4-O-sulfuryl-β-D-galactopyranoside (5), the reaction with aq NaOH in THF gave both 3- and 4-monosulfates 7 and 8 (83%, in 68:32 ratio), while the reaction in DMF led unexpectedly to the 4-deoxy-3-keto derivative 10 in 77% yield after acidic hydrolysis of the intermediate enolester 9. On the other hand, when benzyl 2,3-di-O-benzyl-4,6-O-sulfuryl-β-D-galactopyranoside (6) was treated with aq NaOH in THF, a mixture of benzyl 2,3-di-O-benzyl-6-deoxy-4-O-(sodium sulfonato)-α-L-arabino-hex-5-enopyranoside (11) and benzyl 2,3-di-O-benzyl-4-deoxy-6-O-(sodium sulfonato)-α-L-threo-hex-4-enopyranoside (12) (in 65:35 ratio) was obtained in 93% yield, giving a new and rapid access to 11, a potential precursor of L-sugars derivatives. Alternatively, BzONBu4 gave a regiospecific opening reaction of 6 and led to the 6-O-benzoate 4-O-sulfate derivative (13) in excellent yield.  相似文献   

4.
The Pfitzner-Moffatt oxidation of 6-chloro-9-(2,3-O-isopropylidene-β-D-ribofuranosyl)purine, 9-(2,3-O-isopropylidene-β-D-ribofuranosyl)-6-(methylthio)purine, and 2′,3′-O-isopropylideneadenosine gave the corresponding 5′-aldehydes (3, 13, and 4), which were allowed to react with a number of Wittig ylids. The resulting olefins, primarily trans, were reduced either catalytically or with diimide before removal of the 2′,3′-O-isopropylidene groups to give the desired 5′-substituted purine ribonucleosides.  相似文献   

5.
Nucleobase-anion glycosylation (KOH, tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1), MeCN) of the pyrrolo[2,3-d]pyrimidines 4a – d with 5-O-[(1,1-dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-α-D -ribo-furanosyl chloride ( 5 ) gave the protected β-D -nucleosides 6a – d stereoselectively (Scheme 1). Contrary, the β-D -halogenose 8 yielded the corresponding α-D -nucleosides ( 9a and 9b ) apart from minor amounts of the β-D -anomers. The deprotected nucleosides 10a and 11a were converted into 4-substituted 2-aminopyrrolo[2,3-d]-pyrimidine β-D -ribofuranosides 1 . 10c , 12 , 14 , and 16 and into their α-D -anomers, respectively (Scheme 2). From the reaction of 4b with 5 , the glycosylation product 7 was isolated, containing two nucleobase moieties.  相似文献   

6.
Attempted diazo transfer to 1-O-(2-phenylacetyl)-2,3;5,6-di-O-isopropylidene-α-d-mannofuranose using p-acetamidobenzenesulfonyl azide (p-ABSA) and DBU as base affords 1-O-(2-diazo-2-phenylacetyl)-2,3;5,6-di-O-isopropylidene-α-d-mannofuranose in low yield along with 2,3;5,6-di-O-isopropylidene-α-d-mannofuranose, 1-azido-2,3;5,6-di-O-isopropylidene-β-d-mannofuranose, as well as the unreacted starting material. The azido sugar likely arises from α-mannofuranosyl sulfonate ester formation, through displacement of azide from p-ABSA by the sugar lactol, followed by stereospecific displacement by azide anion on the furanosyl sulfonate ester. This outcome has been studied further with the conditions being applied to several common monosaccharide derivatives. Accessible substrates afford the azido sugar in an overall one-pot alcohol-to-azide conversion, while hindered substrates yield the sulfonate esters.  相似文献   

7.
Pyridoxol and pyridoxal on benzylation with dimethylphenylbenzylammonium hydroxide (“leucotrope”) gave 3-O-benzylpyridoxol (IV) and 3-O-benzylpyridoxal (V), respectively. As a possible mechanism of this reaction an ion pair intermediate has been postulated. Oxidation of IV and V with chromic oxide-pyridine-acetic acid complex gave 3-O-benzyl-4-pyridoxic acid lactone (VI), which could also be obtained by benzylation of 4-pyridoxic acid. Treatment of VI with dimethylamine gave 2-methyl-3-benzyloxy-5-hydroxymethylpyridine-4-N,N-dimethylcarbox-amide (X) which oxidized to form the 5-formyl derivative (XI). The latter on hydrolysis yielded the metabolite, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylic acid (I). When reacted with liquid ammonia, VI gave 3-O-benzyl-4-pyridoxamide (VII) which was then oxidized to give 2-methyl-3-benzyloxypyridine-4,5-dicarboxylic acid cyclicimide(IX). Acid hydrolysis of IX gave another metabolite, 2-methyl-3-hydroxypyridine-4,5-dicarboxylic acid (XIII), which could also be obtained by oxidizing XI with potassium permanganate in water to yield 2-methyl-3-benzyloxy-5-carboxypyridine-4-N,N-dimethylcarboxamide (XII) and subsequent hydrolysis with hydrochloric acid. A positional isomer of I, 2-methyl-3-hydroxy-4-formylpyridine-5-carboxylic acid (XVII) was synthesized starting from 3-O-benzyl-5-pyridoxic acid lactone (XIV) following similar reaction sequences used for the preparation of I. Ring-chain tautomerism has been studied in I, XVII, opianic acid (XVIII), phthalaldehydic acid (XIX) and (2-carboxy-4,5-dimethoxy)-phenylacetaldehyde (XX) in different solvents by nmr and in the solid state by ir spectroscopy. A direct and reliable differentiation between the open form (aldehyde proton in low field) and the ring form (lactol proton in the intermediate field) has been obtained by nmr spectroscopy. In sodium deuteroxide and pyridine-d5 the open chain form existed exclusively (except for homolog (XX) which is in cyclic form in pyridine-d5), whereas in 18% hydrogen chloride in deuterium oxide all the compounds are completely in the cyclic form. In hexafluoroacetone hydrate-d2, XVIII, XIX, and XX exist in the cyclic form whereas I is in the open form. In DMS0-d6 both cyclic and open-chain forms have been observed in XVIII, XIX and XX. Definite peak assignment for the two forms could not be made in I due to broadening or superimposition with C6-H. The metabolite I, isometabolite (XVII) and opianic acid (XVIII) form cyclic acetyl derivatives which give a sharp lactol peak. In the solid state XVIII, XIX are in the cyclic form and I and XX in the open-chain form as observed by ir spectroscopy.  相似文献   

8.
6-Amino-1-(β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]-1,3-oxazin-4-one ( 4 ), an isostere of the nucleoside antibiotic oxanosine has been synthesized from ethyl 5-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)pyrazole-4-carboxylate ( 6 ). Treatment of 6 with ethoxycarbonyl isothiocyanate in acetone gave the 5-thioureido derivative 7 , which on methylation with methyl iodide afforded ethyl 1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-5-[(N'-ethoxycarbonyl-S-methylisothiocarbamoyl)amino]pyrazole-4-carboxylate ( 8 ). Ring closure of 8 under alkaline media furnished 6-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]-1,3-oxazin-4-one ( 10 ), which on deisopropylidenation afforded 4 in good yield. 6-Amino-1-(β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 5 ) has also been synthesized from the AICA riboside congener 5-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)pyrazole-4-carboxamide ( 12 ). Treatment of 12 with benzoyl isothiocyanate, and subsequent methylation of the reaction product with methyl iodide gave 1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-5-[(N'-benzoyl-S-methylisothiocarbamoyl)amino]pyrazole-4-carboxamide ( 15 ). Base mediated cyclization of 15 gave 6-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 14 ). Deisopropylidenation of 14 with aqueous trifluoroacetic acid afforded 5 in good yield. Compound 4 was devoid of any significant antiviral or antitumor activity in culture.  相似文献   

9.
Reaction of 5-dimethylaminomethylpyrrolo[2,3-b]pyridine methiodide or 5-dimethylaminomethylpyrrolo[2,3-d]pyrimidin-4-one methiodide with 5′-deoxy-5′-S-thioacetyl-N6-formyl-2′,3′-O-isopropylideneadenosine in ethanolic sodium hydroxide solution, followed by deprotection of the resulting thioether in 80% formic acid, afforded 5′-deoxy-5′-(5-pyrrolo[2,3-b]pyridinemethylthio)adenosine or 5′-deoxy-5′-[5-(pyrrolo[2,3-d]pyrimidin-4-one)methylthio]adenosine, respectively. Similarly, the metiodide salt of the iso-gramine analog, 2-amino-6-dimethylaminomethylpyrrolo[2,3-d]pyrimidin-4-one afforded 5′-deoxy-5′-[6-(2-aminopyrrolo[2,3-d]pyrimidin-4-one)methylthio]adenosine.  相似文献   

10.
The synthesis of 7,8-dihydroxy-2-(2-methoxycarbonylethyl)-4,9-dioxa-2-azabicyclo[4.2.1]nonane- 3-thione ( 16 ) and of its parents 9-oxa-4-thia-3-thione 17 , and 9-oxa-4-thia-3-one 18 is described. The conversion of 5′-deoxy-5′-iodo-2′,3′-O, O-isopropylidene-5,6-dihydrouridin ( 1 ) into the 2-O-methyl-5,6-dihydrouridine 5 , the 5′-O-acetyl-5,6-dihydrouridine 4 , and into the N-(5-O-acetyl-2,3-O, O-isopropylidene-β-D -ribofuranosyl)-N-(2-methoxycarbonyl thyl)-urea ( 6 ) invoked 2′,3′-O, O-isopropylidene-2,5′-anhydro-5,6-dihydrouridine ( 2 ) as the common intermediate.  相似文献   

11.
To search for novel antihypertensive heterocycles in the condensed quinazoline series, two representative compounds were synthesized via a suitable reaction sequences. Treating anthranilonitrile with allyl isocyanate gave 2-(allylureido)benzonitrile ( 10 ) in a quantitative yield. Compound 10 was cyclized to 3-allylquinazoline-2(1H, 4(3H)-dione ( 11 ). Bromination of 11 in carbon tetrachloride converted it into the corresponding 3-(2,3-dibromopropyl) derivative ( 12 ) in 92% yield. Ring closure of 12 was effected by the action of alkali to afford 2-bromomethyl-2,3-dihydro-5H-oxazolo[2,3-b]quinazolin-5-one ( 13 ). The title compound, 2-(4-benzylpiperazin-1-ylmethyl)-2,3-dihydro-5H-oxazolo[2,3-b]quinazolin-5-one ( 7 ) could be obtained by a reaction of either 12 or 13 with 1-benzylpiperazine respectively. Starting from the readily available 3-allyl-2H-thioxoquinazolin-4(3H)-one ( 16 ) via the analogous reactions gave the 2-bromomethyl-2,3-dihydro-5H-thiazolo[2,3-b]-quinazolin-5-one ( 19 ) in good yield. However, the reaction of 19 with 1-benzylpiperazine provided another target compound, 2-(4-benzylpiperazin-1-ylmethyl)-2,3-dihydro-5H-thiazolo[2,3-b]quinazolin-5-one ( 8 ) only in poor yield (8%). As major product, the dehydrobrominated compound, 2-methylene-2,3-dihydro-5H-thiazolo[2,3-b]quinazolin-5-one ( 22 ) was isolated. A preliminary pharmacological evaluation revealed that both compounds 7 and 8 are devoid of the antihypertensive activity.  相似文献   

12.
The stereospecific cis-hydroxylation of 1-(2,3-dideoxy-β-D -glyceropent-2-enofuranosyl)thymine (1) into 1-β-D -ribofuranosylthymine (2) by osmium tetroxide is described. Treatment of 2′,3′-O, O-isopropylidene-5-methyl-2,5′-anhydrouridine (8) with hydrogen sulfide or methanolic ammonia afforded 5′-deoxy-2′,3′-O, O-isopropylidene-5′-mercapto-5-methyluridine (9) and 2′,3′-O, O-isopropylidene-5-methyl-isocytidine (10) , respectively. The action of ethanolic potassium hydroxide on 5′-deoxy-5′-iodo-2′,3′-O, O-isopropylidene-5-methyluridine (7) gave rise to the corresponding 1-(5-deoxy-β-D -erythropent-4-enofuranosyl)5-methyluracil (13) and 2-O-ethyl-5-methyluridine (14) . The hydrogenation of 2 and its 2′,3′-O, O-isopropylidene derivative 4 over 5% Rh/Al2O3 as catalyst generated diastereoisomers of the corresponding 5-methyl-5,6-dihydrouridine ( 17 and 18 ).  相似文献   

13.
Treatment of methyl 4-O-benzyl-2,3-di-O-methoxymethyl-6-O-1-6-O-trifluoromethanesulfonyl-α -D-glucopyranoside 1 or 3-O-benzyl-1,2-O-isopropylidene-5-O-trifluoromethenesulfonyl-α-D-ribofuranoside 2 with a variety of functionalized C-nucleophiles in THF/HMPA leads to the corresponding chain-extended sugars in very good to excellent yields.  相似文献   

14.
Thermal or base-promoted conversion of 5′-O-TBDMS-3′-O-(1H-imidazole-1-thiocarbonyl)thymidine (1) afforded 5′-O-TBDMS-2,3′-anhydro-thymidine (2), a pivotal intermediate for the transformation of the 3′-hydroxy group of 2′-deoxyribonucleosides, in high yield.  相似文献   

15.
Intramolecular cyclisation of properly protected and activated derivatives of 2′,3′-secouridine ( = 1-{2-hydroxy-1-[2-hydroxy-1-(hydroxymethyl)ethoxy]-ethyl}uracil; 1 ) provided access to the 2,2′-, 2,3′-, 2,5′-, 2′,5′-, 3′,5′-, and 2′,3′-anhydro-2′,3′-secouridines 5, 16, 17, 26, 28 , and 31 , respectively (Schemes 1–3). Reaction of 2′,5′-anhydro-3′-O-(methylsulfonyl)- ( 25 ) and 2′,3′-anhydro-5′-O-(methylsulfonyl)-2′,3′-secouridine ( 32 ) with CH2CI2 in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene generated the N(3)-methylene-bridged bis-uridine structure 37 and 36 , respectively (Scheme 3). Novel chiral 18-crown-6 ethers 40 and 44 , containing a hydroxymethyl and a uracil-1-yl or adenin-9-yl as the pendant groups in a 1,3-cis relationship, were synthesized from 5′-O-(triphenylmethyl)-2′,3′-secouridine ( 2 ) and 5′-O,N6-bis(triphenylmethyl)-2′,3′-secoadenosine ( 41 ) on reaction with 3,6,9-trioxaundecane-1,11-diyl bis(4-toluenesulfonate) and detritylation of the thus obtained (triphenylmethoxy) methylcompound 39 and 43 , respectively (Scheme 4).  相似文献   

16.
ABSTRACT

Treatment of methyl 2,3-di-O-benzyl-α-D-glucopyranoside (1), methyl 2,3-di-O-acetyl-α-D-glucopyranoside (4), 3-O-benzyl-1,2-O-(1-methylethylidene)-α-D-glucofuranose (6), 3-O-acetyl-1,2-O-(1-methylethylidene)-α-D-glucofuranose (9), 1,2-O-(1-methylethylidene)-α-D-xylofuranose (11) and methyl 2,3-di-O-acetyl-α-D-galactopyranoside (15) with diisopropylazodicarboxylate-triphenylphosphine in tetrahydrofuran led to the corresponding dioxaphosphoranes, which were opened by trimethylsilyl azide affording the silylated primary azidodeoxysugars. When the same reaction was performed on methyl 2,3-di-O-benzyl-α-D-galactopyranoside (20), an inversion of the regioselectivity of the dioxaphosphorane opening was observed, leading mainly to the 4-azido-4-deoxy-α-D-glucopyranoside derivative 27.  相似文献   

17.
Cyanation of furo[2,3-b]-, -[2,3-c]- and -[3,2-c]pyridine N-oxides 1a, 1b and 1c by the Reissert-Henze method, reaction with benzoyl chloride and trimethylsilyl cyanide in dichloromethane and the reaction with trimethylsilyl cyanide and triethylamine in acetonitrile afforded 6-cyanofuro[2,3-b]- 2a , 7-cyanofuro[2,3-c]- 2b and 4-cyanofuro[3,2-c]pyridine 2c in moderate to excellent yield. The cyano group in 2a, 2b and 2c was converted to carboxamides 3a, 3b and 3c , ethyl imidates 5a, 5b and 5c and ethyl carboxylates 6a, 6b and 6c . Reaction of the N-oxides with trimethylsily bromide in acetonitrile gave the deoxygenated furopyridine 7a and 7d , bifuropyridyl 8b and 8c , and the N-oxide 9 of 8c .  相似文献   

18.
The successful removal of the isopropylidene-protecting group from 1,4-anhydro-2,3-O-isopropylidene-5-O-tosyl-D,L-ribitol and from quaternary N-(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol-5-yl)ammonium salts is reported. The structures of all isolates were determined by spectral analysis, including extensive 2-D NMR analyses. Single-crystal x-ray diffractions of 1,4-anhydro-5-O-tosyl-D,L-ribitol and its 2,3-O-isopropylidene derivatives are reported.  相似文献   

19.
Reaction of 2-trifluoromethyl- or 2-cyanonaphth[2,3-d] imidazole (1 or 2) with 1-O-acetyl-2,3,5-tri-O- benzoyl-β-D-ribofuranose (3), using the triflate or fusion method afforded 2-trifluoromethyl-1-(2,3,5-tri- O-benzoyl-α-D- or -β-D-ribofuranosyl)naphth[2,3-d]imidazole (4 or 6) and 2-cyano-1-(2,3,5-tri-O-benzoyl-α-D- or β-D-ribofuranosyl)naphth[2,3,-d] imidazole (5 or 7), respectively. The products 4 and 5 or 6 and 7 were separated by chromatography on silica gel. Treatment of the blocked nucleosides 4-7 with methanolic NH3 at 0 °C furnished the deblocked nucleosides 8-11 respectively. Treatment of 10 with 5% NH3 (aq) at 60 °C gave 11. Structural elucidation is based on elemental analysis, UV, FAB-MS and 1H NMR spectra. Compounds 4-11 were subjected to antibacteial testing. Compounds 5, 7 and 10 have significant activity against Staphylococous aureus (gram positive) and Esherichia coli (gram negative) bacteria, whereas the other tested compounds showed no significant activity.  相似文献   

20.
The determination of the molecular structure of 2,3-O-carboxymethyl cellulose (2,3-O-CMC), prepared via 6-O-(4-monomethoxy)triphenylmethyl cellulose, was carried out in detail by means of enzymatic and chemical methods. The 2,3-O-CMCs had degrees of substitution (DS) in the range of 0.5–1.2 showing a narrow molar mass distribution as revealed by SEC. As a result of an endoglucanase treatment, an intensive depolymerization of the samples occurred which was more pronounced for 2,3-O-CMC with comparatively low DS. All degraded samples could be separated into 18 fractions by preparative SEC and the proportion of each individual repeat unit was analysed by anion exchange chromatography (AEC) following complete hydrolytic chain degradation. The results indicated a homogeneous distribution of the functional groups within the polymer chain. Moreover, it became obvious that a preferred carboxymethylation of O-2 compared with O-3 occurred and that a preferred functionalization of already carboxymethylated units occurred as the reaction progressed. AEC with pulsed amperometric detection, which was used to separate and analyse the differently functionalized repeating units as well as glucose, had to be calibrated. Therefore, a method to determine the response factors of the individual carboxymethylated glucose units was developed using 13C NMR spectroscopic measurements (inverse gated decoupling) of depolymerised 2,3-O-CMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号