首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
金属纳米簇作为一种新型的荧光纳米材料,展现出良好的生物相容性和优良的物化性质,近年来受到各个领域的关注,尤其在生物医学领域得到了广泛的应用。该文在介绍多种金属纳米簇的合成方法和光学性质的基础上,综述了金属纳米簇在生物传感、生物成像和肿瘤治疗等领域的应用研究进展,并对其面临的挑战和应用前景进行了展望。  相似文献   

2.
金团簇的荧光性质及其生物应用   总被引:2,自引:0,他引:2  
金纳米团簇作为一类新型纳米材料具有独特的光学特性。当金纳米团簇颗粒的尺寸小到与电子的费米波长(〈1nm)相当时,由于量子尺寸效应,金颗粒会受激发射出荧光。作为一种新型荧光材料,金纳米团簇具有发光颜色随团簇尺寸可调、荧光不易猝灭等许多优势。本文主要综述了金纳米团簇的荧光性质及其在生物标记、生物成像以及生物检测等方面的应用...  相似文献   

3.
金纳米团簇(gold nanoclusters,Au NCs)是一种新型的荧光纳米材料,由几个到几百个原子组成,尺寸接近于电子的费米波长。由于量子尺寸效应,金纳米团簇显示出独特的光学特性。荧光金纳米团簇具有尺寸小、水溶性好、光物理性质好、比表面积大、表面易于修饰以及荧光性质随尺寸可调等优点,是近年来的研究热点。通过改变配体或者生物支架合成的各种荧光金纳米团簇,在传感检测、纳米标记、医学成像和光电子学等领域具有潜在的应用前景。作为新型荧光探针,荧光金纳米团簇已成功用于对阳离子、阴离子及重要的生物活性物质如过氧化氢、葡萄糖、谷胱甘肽、三磷酸腺苷、氨基酸等小分子化合物的检测。本文结合当前的研究现状,介绍了金纳米团簇在小分子化合物荧光检测中的应用,并简要评述了金纳米团簇研究中所面临的挑战及应用前景。  相似文献   

4.
合金纳米团簇作为一类新兴的多功能纳米材料已被广泛用于催化、光学传感以及生物医学成像等研究领域,而纳米团簇的可控合成和结构特征是调节纳米团簇性质并对其进一步利用的基础。尽管当前有关金属纳米团簇可控合成和结构特征的研究主要集中在单金属纳米团簇中,但有关合金纳米团簇原子精度的可控合成也取得了显著的进展。本文综述了配体保护的合金金属纳米团簇原子精度可控合成策略,包括一步合成法、金属交换、配体交换、化学刻蚀、簇间反应、原位两相配体交换以及最新的表面模体交换反应,并对相关合成策略的优缺点进行了详细的讨论和阐述。  相似文献   

5.
纳米发光银簇作为一类新型荧光金属纳米材料,具有优异的光物理性质以及良好的生物相容性,在生物传感和生物显像领域受到了越来越多的关注。本文主要以纳米发光银簇为研究对象,围绕纳米发光银簇的不同合成模板、合成方法及其在不同领域的应用进展作一综述。  相似文献   

6.
随着纳米技术的飞速发展,纳米材料已成为一种新型材料。纳米材料具有独特的物理化学性质,如小尺寸效应、巨大比表面积、极高的反应活性、量子效应等,这些特性使纳米科学成为当今世界三大支柱科学之一。碳纳米材料是纳米材料领域重要的组成部分,主要包括碳纳米管、富勒烯、石墨烯、纳米钻石及其衍生物等。由于其独特的理化特性,它们在生物医学领域具有广泛的应用前景。另外,随着碳纳米材料的产业化,各种形式的碳纳米材料将以不同途径进入人们的生活,纳米材料的生物安全性问题正受到世界各国科学家的广泛关注。本文综述了这四类碳纳米材料在组织工程、药物/基因载体、生物成像、肿瘤治疗、抗病毒/抗菌、生物传感等生物医学领域的应用现状以及存在的生物安全问题,最后,讨论了该领域未来的研究内容和方向以及亟待研究的重要问题。  相似文献   

7.
纳米发光银簇作为一类新型荧光金属纳米材料,具有优异的光物理性质以及良好的生物相容性,在生物传感和生物显像领域受到了越来越多的关注。本文主要以纳米发光银簇为研究对象,围绕纳米发光银簇的不同合成模板、合成方法及其在不同领域的应用进展作一综述。  相似文献   

8.
光学生物传感是以产生各种光学信号为检测基础的一种微量分析技术,具有操作简便、检测成本低、抗干扰能力强及可实现原位检测等优点,在临床诊断、药物分析、环境监测等领域显示出广阔的应用前景。作为纳米材料重要成员之一的金纳米粒子(AuNPs),因其独特的光学性质被广泛用于光学生物传感方法的构建。该文综述了近年来基于金纳米粒子的光学生物传感方法在分析检测中的研究进展,提出了实际应用中可能存在的问题并对未来发展趋势进行展望。  相似文献   

9.
有机-无机复合荧光纳米材料制备简便,生物相容性好,成像性能优异,在化学和生物传感、生物成像、催化及能源材料等领域受到很多关注.传统的荧光有机小分子与无机材料复合时,常发生荧光猝灭,而聚集诱导发光(Aggregation-InducedEmission,AIE)有机小分子在聚集态具有高发光量子产率,为有机-无机复合荧光纳米材料的研究提供了机遇.由于AIE有机小分子功能化的无机纳米材料独特的优点,人们对其设计、合成及应用进行了较多研究.综述了AIE有机小分子和多种类型的无机纳米结构(金属纳米颗粒、钙钛矿材料、层状材料、氧化物、硫化物等)复合材料的制备和应用的新进展,特别是在化学和生物传感、生物成像、药物输运、光热治疗、催化以及能源等领域的应用,并对其发展前景进行了展望.  相似文献   

10.
朱琳  傅青云 《广州化学》2014,39(4):65-72
综述了新型金属纳米材料Au25纳米团簇的合成机理和合成工艺改进,结合Au纳米团簇荧光作用机理说明其特有的荧光特性,利用Au纳米团簇荧光性质在离子检测、生物小分子检测、蛋白质检测和生物成像方面的应用,为Au纳米团簇的研究提供参考。  相似文献   

11.
Fluorescence-based detection is the most common method utilized in biosensing because of its high sensitivity, simplicity, and diversity. In the era of nanotechnology, nanomaterials are starting to replace traditional organic dyes as detection labels because they offer superior optical properties, such as brighter fluorescence, wider selections of excitation and emission wavelengths, higher photostability, etc. Their size- or shape-controllable optical characteristics also facilitate the selection of diverse probes for higher assay throughput. Furthermore, the nanostructure can provide a solid support for sensing assays with multiple probe molecules attached to each nanostructure, simplifying assay design and increasing the labeling ratio for higher sensitivity. The current review summarizes the applications of nanomaterials—including quantum dots, metal nanoparticles, and silica nanoparticles—in biosensing using detection techniques such as fluorescence, fluorescence resonance energy transfer (FRET), fluorescence lifetime measurement, and multiphoton microscopy. The advantages nanomaterials bring to the field of biosensing are discussed. The review also points out the importance of analytical separations in the preparation of nanomaterials with fine optical and physical properties for biosensing. In conclusion, nanotechnology provides a great opportunity to analytical chemists to develop better sensing strategies, but also relies on modern analytical techniques to pave its way to practical applications.
Wenwan ZhongEmail:
  相似文献   

12.
石墨碳纳米材料因其特殊的光学性质而受到广泛关注。石墨碳纳米材料最引人注目的光学性质之一是其独特的拉曼性质,作为拉曼探针,石墨碳纳米材料在对于复杂生物样品,极端测试条件和定量拉曼检测方面都有很好的应用;除了拉曼性质以外,单壁碳纳米管(SWNTs)独特的近红外二区(NIR-II,1000-1700 nm)荧光性质,具有穿透深度大、分辨率高的荧光成像特点,在生物活体成像领域也得到了很好的应用。除了光致发光特性,石墨碳纳米材料还具有优异的光热转换效应,同时具有比表面积大的特点,被广泛应用在针对肿瘤的热疗及其它疗法协同治疗当中。除此之外,石墨碳纳米材料还是一种高效的信号传导基底,可以猝灭激发态的染料和光敏剂,利用该类性质设计的生物传感器和纳米药物,显现出高灵敏、高选择性的特点。本文主要结合本课题组的工作,总结和探讨了石墨碳纳米材料作为光学探针、光热材料和信号传递基底在生化传感领域的应用。  相似文献   

13.
Functional nanomaterials have emerged as promising candidates in the development of an amperometric sensing platform for the detection and quantification of bioanalytes. The remarkable characteristics of nanomaterials based on metal and metal oxide nanoparticles, carbon nanotubes, and graphene ensure enhanced performance of the sensors in terms of sensitivity, selectivity, detection limit, response time, and multiplexing capability. The electrocatalytic properties of these functional materials can be combined with the biocatalytic activity of redox enzymes to develop integrated biosensing platforms. Highly sensitive and stable miniaturized amperometric sensors have been developed by integrating the nanomaterials and biocatalyst with the transducers. This review provides an update on recent progress in the development of amperometric sensors/biosensors using functional nanomaterials for the sensing of clinically important metabolites such as glucose, cholesterol, lactate, and glutamate, immunosensing of cancer biomarkers, and genosensing.  相似文献   

14.
Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria.  相似文献   

15.
The application of luminescent semiconductor quantum dots (QDs) within a wide range of biological imaging and sensing formats is now approaching its 15th year. The unique photophysical properties of these nanomaterials have long been envisioned as having the potential to revolutionize biosensing within cellular studies that rely on fluorescence. However, it is only now that these materials are making the transition towards accomplishing this goal. With the idea of understanding how to actively incorporate QDs into different types of cellular biosensing, we review the progress in many of the areas relevant to achieving this goal. This includes the synthesis of the QDs themselves, with an emphasis on minimizing potential toxicity, along with the general methods for making these nanocrystalline structures stable in aqueous media. We next survey some methods for conjugating QDs to biomolecules to allow them to participate in active biosensing. Lastly, we extensively review many of the applications where QDs have been demonstrated in an active role in cellular biosensing. These formats cover a wide range of possibilities including where the QDs have contributed to: monitoring the cell's interaction with its extracellular environment; elucidating the complex molecular interplay that characterizes the plasma membrane; understanding how cells continuously endocytose and exocytose materials across the cellular membrane; visualizing organelle trafficking; and, perhaps most importantly, monitoring the intracellular presence of target molecules such as nucleic acids, nutrients, cofactors, and ions or, alternatively, intracellular responses to external changes in the environment. We illustrate these processes with examples from the recent literature and focus on what QDs can uniquely contribute along with discussing the benefits and liabilities of each sensing strategy. A perspective on where this field is expected to develop in both the near and long-term is also provided.  相似文献   

16.
手性无机纳米结构不仅形貌和结构可调控、 易于表面功能化修饰, 而且光学性质独特, 在生物领域的应用上展现了很大的优异性. 本文综述了近年来手性纳米技术在生物医学领域的研究进展, 重点介绍了手性金属和手性半导体纳米结构的合成策略、 圆二色效应、 光手性机制及在生物成像、 生物传感、 肿瘤以及神经退行性疾病等医学领域的应用. 手性纳米材料的研究丰富了生物化学的纳米技术手段, 促进了肿瘤等重大疾病诊断与治疗技术的进步, 推动了手性在生命科学中的发展, 鼓励了研究者对这一新兴领域的持续探索与挑战.  相似文献   

17.
The emerging "bottom-up" nanotechnology reveals a new field of bioinspired nanomaterials composed of chemically synthesized biomolecules. They are formed from elementary constituents in supramolecular structures by the use of a developed nature self-assembly mechanism. The focus of this perspective paper is on intrinsic fundamental physical properties of bioinspired peptide nanostructures and their small building units linked by weak noncovalent bonds. The observed exceptional optical properties indicate a phenomenon of quantum confinement in these supramolecular structures, which originates from nanoscale size of their elementary building blocks. The dimensionality of the confinement gives insight into intrinsic packing of peptide supramolecular nanomaterials. QC regions, revealed in bioinspired nanostructures, were found by us in amyloid fibrils formed from insulin protein. We describe ferroelectric and related properties found at the nanoscale based on original crystalline asymmetry of the nanoscale building blocks, packing these structures. In this context, we reveal a classic solid state physics phenomenon such as reconstructive phase transition observed in bioorganic peptide nanotubes. This irreversible phase transformation leads to drastic reshaping of their quantum structure from quantum dots to quantum wells, which is followed by variation of their space group symmetry from asymmetric to symmetric. We show that the supramolecular origin of these bioinspired nanomaterials provides them a unique chance to be disassembled into elementary building block peptide nanodots of 1-2 nm size possessing unique electronic, optical and ferroelectric properties. These multifunctional nanounits could lead to a new future step in nanotechnology and nanoscale advanced devices in the fields of nanophotonics, nanobiomedicine, nanobiopiezotronics, etc.  相似文献   

18.
The first decade of the 21st century has been labeled as the sensing decade. The functional nanomaterials offer excellent platforms for fabrication of sensitive biosensing devices, including optical and electronic biosensors. A lot of works have fo- cused on the biofunctionalization of different nanomaterials, such as metal nanoparticles, semiconductor nanoparticles and carbon nanostructures, by physical adsorption, electrostatic binding, specific recognition or covalent coupling. These biofunc- tionalized ...  相似文献   

19.
Nanosized carbon materials are offering great opportunities in various areas of nanotechnology. Carbon nanotubes and graphene, due to their unique mechanical, electronic, chemical, optical and electrochemical properties, represent the most interesting building blocks in various applications where analytical chemistry is of special importance. The possibility of conjugating carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. This review describes the trends in this field as reported in the last 6?years in (bio)analytical chemistry in general, and in biosensing in particular.
Figure
Carbon nanotubes and graphene in analytical applications  相似文献   

20.
Lin YW  Huang CC  Chang HT 《The Analyst》2011,136(5):863-871
Monitoring the levels of potentially toxic metal (PTM) ions (e.g., Hg(2+), Pb(2+), Cu(2+)) in aquatic ecosystems is important because these ions can have severe effects on human health and the environment. Gold (Au) nanomaterials are attractive sensing materials because of their unique size- and shape-dependent optical properties. This review focuses on optical assays for Hg(2+), Pb(2+), and Cu(2+) ions using functionalized Au nanomaterials. The syntheses of functionalized Au nanomaterials are discussed. We briefly review sensing approaches based on changes in absorbance resulting from metal ion-induced aggregation of Au nanoparticles (NPs) or direct deposition of metal ions onto Au NPs. The super-quenching properties of Au NPs allow them to be employed in 'turn on' and 'turn off' fluorescence approaches for the sensitive and selective detection of Hg(2+), Pb(2+), and Cu(2+) ions. We highlight approaches based on fluorescence quenching through analyte-induced aggregation or the formation of metallophilic complexes of Au nanodots (NDs). We discuss the roles of several factors affecting the selectivity and sensitivity of the nanosensors toward the analytes: the size of the Au nanomaterial, the length and sequence of the DNA or the nature of the thiol, the surface density of the recognition ligand, and the ionic strength and pH of the buffer solution. In addition, we emphasize the potential of using new nanomaterials (e.g., fluorescent silver nanoclusters) for the detection of PTM ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号