首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (ETV-ID-ICP-MS) has been applied to the determination of Cd, Hg and Pb in seawater samples. The isotope ratios of the elements studied in each analytical run were calculated from the peak areas of each isotope. Various modifiers were tested for the best signal of these elements. After preliminary studies, 0.15% m/v TAC and 4% v/v HCl were added to the sample solution to work as the modifier. The ETV-ID-ICP-MS method has been applied to the determination of Cd, Hg and Pb in NASS-4 and CASS-3 reference seawater samples and seawater samples collected from Kaohsiung area. The results for reference sample NASS-4 and CASS-3 agreed satisfactorily with the reference values. Results for other samples determined by isotope dilution and method of standard additions agreed satisfactorily. Detection limits were approximately 0.002, 0.005 and 0.001 ng ml−1 for Cd, Hg and Pb in seawater, respectively, with the ETV-ICP-MS method. Precision between sample replicates was better than 20% for most of the determinations.  相似文献   

2.
Electrothermal vaporization inductively coupled plasma mass spectrometry (ETV‐ICP‐MS) has been applied to the determination of Hg and Tl in seawater samples. Various modifiers were tested for the best signal of these elements. After preliminary studies, 0.3% EDTA, 0.1%m/vTAC and 1% v/v HCl were added to the sample solution to work as the modifier. Since the sensitivities of Hg and Tl in various seawater matrices and aqueous standard solutions were quite different, standard addition method and isotope dilution method were used for the determination of Hg and Tl in these seawater samples. This method was applied to the determination of Hg and Tl in NASS‐4 and CASS‐3 reference seawater samples and seawater samples collected from the Kaohsiung area. Results obtained by isotope dilution method and method of standard additions agreed satisfactorily. Detection limits were in the range of 5‐15 and 0.4‐0.5 ng l?1 for Hg and Tl in seawater, respectively, with the ETV‐ICP‐MS method. The precision between sample replicates was better than 18%) for all the determinations.  相似文献   

3.
Ultrasonic slurry sampling electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (USS-ETV-ID-ICP-MS) has been applied to the determination of Cd, Hg and Pb in coal fly ash samples. Thioacetamide (TAC) was used as the modifier. Since the sensitivities of the elements studied in coal fly ash slurry and aqueous solution were quite different, isotope dilution method was used for the determination of Cd, Hg and Pb in these coal fly ash samples. The isotope ratios of each element were calculated from the peak areas of each injection peak. This method has been applied to the determination of Cd, Hg and Pb in NIST SRM 1633a coal fly ash reference material and a coal fly ash sample collected from Kaohsiung area. Analysis results of reference sample NIST SRM 1633a coal fly ash agreed satisfactorily with the certified values. The other sample determined by isotope dilution and method of standard additions was agreed satisfactorily. Precision was better than 6% for most of the determinations and accuracy was better than 4% with the USS-ETV-ID-ICP-MS method. Detection limits estimated from standard addition curves were in the range of 24–58, 6–28 and 108–110 ng g−1 for Cd, Hg and Pb, respectively.  相似文献   

4.
Inductively coupled plasma mass spectrometry (ICP-MS) was used in an isotope dilution mode to assay small-volume (0.25 ml) sediment pore waters for their uranium contents, using 236U as the spike. The only pretreatment required was a simple dilution by a factor of 20, which gave sufficient volume for three replicate analyses per sample. Rapid and accurate results were obtained for a variety of samples and standards, ranging in concentration from 0.05 to 10 ng U ml?1. A suite of 30 samples can be analysed in less than 6 h by this method. The relative standard deviation was better than 1.9%, with a detection limit, based on 3σ background, of 2 pg U ml?1 in solution (40 pg ml?1 in samples). Sea water is a difficult matrix for ICP-MS and thus the method is generally suitable for uranium determinations in many other sample solutions.  相似文献   

5.
An analytical method for trace levels of iron in a seawater sample using isotope dilution ICP-MS was developed. Preconcentration of iron and the removal of major elements in seawater such as alkali and alkaline-earth elements can be carried out quickly using a chelating resin disk by adjusting the sample pH to 3. The collision cell option of the ICP-MS instrument method was used to improve the performance of the instrument for iron measurements since ArO and ArN interferences could be reduced using this analytical method. About 4 ml min(-1) helium, as the collision gas, were introduced into the cell. 40Ar14N and 40Ar16O which interfere with 54Fe and 56Fe in water had their amounts decreased by 5 orders of magnitude. Then, the isotope dilution method was used for iron determination below ng g(-1) level of trace iron in four environmental reference materials (river water standard sample JAC-0031 (Japan Soc. for Analytical Chemistry), estuarine standard sample SLEW-2 (NRC Canada) and seawater standard samples CASS-3 and NASS-5 (NRC Canada)) were measured. Good agreement between analytical results and certified values of reference materials was obtained, which confirmed the effectiveness of this method.  相似文献   

6.
We report on a new, rapid and simple method for the determination of ultra-trace quantities of mercury ion in human saliva. It is based on solidified floating organic drop microextraction and detection by cold vapor atomic fluorescence spectrometry (CV-AFS). Mercury ion was complexed with diethyldithiocarbamate, and the hydrophobic complex was then extracted into fine droplets of 1-undecanol. By cooling in an ice bath after extraction, the droplets in solution solidify to form a single ball floating on the surface of solution. The solidified microdrop containing the mercury complex was then transferred for determination by CV-AFS. The effects of pH value, concentration of chelating reagent, quantity of 1-undecanol, sample volume, equilibration temperature and time were investigated. Under the optimum conditions, the preconcentration of a 25-mL sample is accomplished with an enrichment factor of 182. The limit of detection (3σ) is 2.5?ng?L?1. The relative standard deviation for seven replicate determinations at 0.1?ng?mL?1 level is 4.1%. The method was applied to the determination of mercury in saliva samples collected from four volunteers. Two volunteers having dental amalgam fillings had 0.4?ng?mL?1 mercury in their saliva, whereas mercury was not detectable in the saliva of two volunteers who had no dental fillings.
Figure
Ultra-trace mercury in human saliva was preconcentrated by 1-undecanol based on solidified floating organic drop microextraction (SFODME) and determined by cold vapor atomic fluorescence spectrometry (CV-AFS).  相似文献   

7.
A glassy carbon electrode was modified with carbon nanotubes and the ionic liquid N‐butyl pyridinium trifluoromethyl methanesulfonate for the determination of methyldopa in urine samples. Methyldopa exhibited a well‐defined anodic signal over a broad pH range of 2–10 and the peak current increased approximately 100 fold over that of the unmodified electrode. Accordingly, a novel method for the determination of methyldopa was proposed using differential pulse voltammetry. The peak current was linear over a methyldopa concentration range from 21 to 2111 ng mL?1 with a LOD of 6.9 ng mL?1 and a LOQ of 7.4 ng mL?1. The method was applied to determine the excretion profile of methyldopa in urine without sample pretreatment.  相似文献   

8.
A new method was proposed for the accurate determination of mercury in cosmetic samples based on isotopic dilution (ID)-photochemical vapor generation (PVG)-inductively coupled plasma mass spectrometry (ICP MS) measurement. Cosmetic samples were directly dissolved in formic acid solution and subsequently subjected to PVG for the reduction of mercury into vapor species following by ICP MS detection. Therefore, the risks of analyte contamination and loss were avoided. Highly enriched 201Hg isotopic spike is added to cosmetics and the isotope ratios of 201Hg/202Hg were measured for the quantitation of mercury. With ID calibration, the influences originating from sample matrixes for the determination of mercury in cosmetic samples have been efficiently eliminated. The effects of several experimental parameters, such as the concentration of the formic acid, and the flow rates of carrier gas and sample were investigated. The method provided good reproducibility and the detection limits were found to be 0.6 pg mL−1. Finally, the developed method was successfully applied for the determination of mercury in six cosmetic samples and a spike test was performed to verify the accuracy of the method.  相似文献   

9.
Summary The versatility of ICP-MS in marine analytical chemistry is illustrated with applications to the multielement trace analysis of two recently released marine reference materials, the coastal seawater CASS-2 and the non-defatted lobster hepatopancreas tissue LUTS-1, and to the determination of tributyltin and dibutyltin in the harbour sediment reference material PACS-1 by HPLC-ICP-MS. Seawater analyses were performed after separation of the trace elements either by adsorption on immobilized 8-hydroxy-quinoline or by reductive coprecipitation with iron and palladium. Simultaneous determination of seven trace elements in LUTS-1, including mercury, by isotope dilution ICP-MS, was achieved after dissolution by microwave digestion with nitric acid and hydrogen peroxide. Butyltin species in PACS-1 were separated by cation exchange HPLC of an extract of the sediment; method detection limits for tributyltin and dibutyltin in sediment samples are estimated to be 5 ng Sn/g and 12 ng Sn/g, respectively.Summer assistant 1988Summer assistant 1989  相似文献   

10.
《Electroanalysis》2005,17(8):719-723
A very sensitive and selective adsorptive cathodic stripping procedure for trace measurement of uranium is presented. The method is based on adsorptive accumulation of the uranium‐pyromellitic acid (benzene‐1,2,4,5‐tetracarboxylic acid) complex onto a hanging mercury drop electrode, followed by reduction of the adsorbed species by voltammetric scan using differential pulse modulation. Influences of effective parameters such as pH, concentration of pyromellitic acid, accumulation potential and accumulation time on the sensitivity were studied. The peak current was proportional to the concentration of U(IV) up to 40 ng mL?1 with a limit of detection of 0.136 ng mL?1 with an accumulation time of 120 s. The range of linearity enhanced to 71.4 ng mL?1and the detection limit improved to 0.058 ng mL?1with accumulation times of 60 s and 300 s respectively. The relative standard deviation for 10 replicate determination of 4.76 ng mL?1 U(IV) was equal to 2.7%. The possible interference by major cations and anions are investigated. The method was applied to the determination of uranium in some analytical grade salts, seawater and in synthetic samples corresponding to some uranium alloys with satisfactory results.  相似文献   

11.
An inductively coupled plasma isotope dilution mass spectrometric (ICP-IDMS) method was developed as a suitable method – with respect to its sensitivity, precision, accuracy, and time-consumption – for the analysis of toxic heavy metal traces (Pb, Cd, Cr, and Hg) in polyolefins. Results for Pb, Cd, and Cr were compared with those obtained by thermal ionization isotope dilution mass spectrometry (TI-IDMS), which was used as a reference method. Because of its high first ionization potential and its high volatility mercury could not be determined by TI-IDMS. A multi-element spike solution, containing isotopically enriched 206Pb, 116Cd, 53Cr, and 201Hg, was used for the isotope dilution step. Decomposition of the polyolefin samples was carried out with concentrated HNO3 at temperatures of about 300?°C in a high pressure asher (HPA). This procedure decomposes polyolefins completely and allows isotopic equilibration between sample and spike isotopes. Detection limits of 16 ng/g, 5 ng/g, 164 ng/g, and 9 ng/g were obtained for Pb, Cd, Cr, and Hg by ICP-IDMS using only sample weights of 0.25 g. In different commercially available polyethylene samples heavy metal concentrations in the range of < 5 ng/g to 4 × 103 ng/g were analyzed. Both mass spectrometric methods were applied within the EU project “Polymeric Elemental Reference Material (PERM)” for the certification of two polyethylene reference materials. The ICP-IDMS results agreed very well with those of TI-IDMS which demonstrates the accuracy of the ICP-IDMS method also suitable for routine analyses.  相似文献   

12.
Species-specific stable isotope dilution in combination with gold trap- or gas chromatography (GC)-inductively coupled plasma mass spectrometry (ICP-MS) is reported for the determination of inorganic mercury and methylmercury in diatoms (Chaetoceros curvisetus). The optimum conditions for the separation parameters were established. The isotope dilution analysis was performed using 199Hg-enriched Hg2+ and laboratory-synthesized 201Hg-enriched methylmercury. The absolute detection limits obtained with isotope dilution-ICP-MS were 9 pg for total mercury and 0.6 pg for methylmercury. The relative error of 7 Hg isotopic abundances based on the peak area measurements was better than 2.0% for 20 pg of methylmercury (as Hg) and 250 pg of inorganic mercury. The accuracy of the method was validated with a biological certified reference material. The developed method was then applied to investigate the uptake of inorganic mercury and methylmercury by C. curvisetus. Continuous uptake of inorganic mercury and methylmercury was observed during 5 days of incubation.  相似文献   

13.
An inductively coupled plasma isotope dilution mass spectrometric (ICP-IDMS) method was developed as a suitable method - with respect to its sensitivity, precision, accuracy, and time-consumption - for the analysis of toxic heavy metal traces (Pb, Cd, Cr, and Hg) in polyolefins. Results for Pb, Cd, and Cr were compared with those obtained by thermal ionization isotope dilution mass spectrometry (TI-IDMS), which was used as a reference method. Because of its high first ionization potential and its high volatility mercury could not be determined by TI-IDMS. A multi-element spike solution, containing isotopically enriched 206Pb, 116Cd, 53Cr, and 201Hg, was used for the isotope dilution step. Decomposition of the polyolefin samples was carried out with concentrated HNO3 at temperatures of about 300 degrees C in a high pressure asher (HPA). This procedure decomposes polyolefins completely and allows isotopic equilibration between sample and spike isotopes. Detection limits of 16 ng/g, 5 ng/g, 164 ng/g, and 9 ng/g were obtained for Pb, Cd, Cr, and Hg by ICP-IDMS using only sample weights of 0.25 g. In different commercially available polyethylene samples heavy metal concentrations in the range of < 5 ng/g to 4 x 10(3) ng/g were analyzed. Both mass spectrometric methods were applied within the EU project "Polymeric Elemental Reference Material (PERM)" for the certification of two polyethylene reference materials. The ICP-IDMS results agreed very well with those of TI-IDMS which demonstrates the accuracy of the ICP-IDMS method also suitable for routine analyses.  相似文献   

14.
A syringe-driven chelating column (SDCC) was applied to develop an on-line preconcentration/inductively coupled plasma mass spectrometry (ICP-MS) method for preconcentration and determination of rare earth elements (REEs) in seawater samples. The present on-line preconcentration system consists of only one pump, two valves, an SDCC, an ICP-MS, several connectors, and Teflon tubes. Optimizations of adsorption pH condition, sample loading flow rate, and integration range were carried out to achieve optimum measurement conditions for REEs in seawater sample. Six minutes was enough for a preconcentration and measurement cycle using 10 mL of seawater sample, where the detection limits for different REEs were in the range of 0.005 pg mL−1 to 0.09 pg mL−1. Analytical results of REEs in a seawater certified reference material (CRM), NASS-5, confirmed the usefulness of the present method. Furthermore, concentrations of REEs in Nikkawa Beach coastal seawater were determined and discussed with shale normalized REE distribution pattern.  相似文献   

15.
Different sample treatment procedures were combined with inductively coupled plasma mass spectrometry (ICP-MS) and negative thermal ionisation mass spectrometry (NTI-MS) for the determination of ruthenium traces in photographic emulsions. Dissolution of the samples in concentrated ammonia solution was used in connection with ICP-MS by external calibration, which has the advantage of a simple sample preparation technique but introduces high amounts of the silver matrix into the mass spectrometer. On the other hand, isotope dilution mass spectrometry (IDMS) with an enriched 99Ru spike solution was applied for ICP-MS and NTI-MS measurements, respectively, in connection with a significant reduction of the matrix by AgCl precipitation. In these cases loss of ruthenium by the AgCl precipitate has no effect on the analytical result. The results of the different methods agreed usually well analysing ruthenium traces in the range of 0.1–10 μg per gram emulsion. The detection limits obtained were 4 ng/g for ICP-IDMS, 20 ng/g for NTI-IDMS, and 15 ng/g for ICP-MS with external calibration. Differences in the results between the different methods could mainly be attributed to sample inhomogeneities. ICP-IDMS with silver matrix reduction by AgCl precipitation is recommended as a routine method, NTI-IDMS with the corresponding sample treatment as a calibration method.  相似文献   

16.
A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v l-cysteine, 0.5 μg mL−1 Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng  g−1 for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample.  相似文献   

17.
The sensitivity of on-line vapor generation atomic absorption spectrometry of mercury and selenium was improved by using a new atom trap technology. The inner wall of a T-shaped quartz tube was coated with nanometer SiO2 so increase the residence time of the analyte atoms in the light path. The linear range of the calibration plots thus was increased to a range from 5.0 to 150 ng mL?1 for mercury, and from 4.5 to 100 ng mL?1 for selenium. The detection limits are 0.9 ng mL?1 for Hg and 1.0 ng mL?1 for Se which is a 2-fold improvement. The technique was applied to the determination of Hg and Se in herbs and hair.  相似文献   

18.
A fast, simple and sensitive square-wave voltammetric (SWV) method for the determination of trace amounts of furazolidone (FZ) in urine is reported. A three-electrode system containing stationary mercury dropping (SMDE) working electrode, Pt auxiliary electrode and Ag/AgCl reference electrode was used throughout. Briton-Rabinson buffer solution is used as both pH adjusting agent and supporting electrolyte. The calibration graph showed good linearity in the concentration range of 20–900 ng ml?1 of furazolidone with a regression coefficient of 0.9996. The equation Δ(i) = 0.0095CFZ + 0.234 was used for calculation of furazolidone concentration in the sample solution, where CFZ is the concentration of furazolidone in ng ml?1 and Δ(i) is the difference between voltammogram peak currents of sample and blank solution. The RSD for 8 replicate measurements of a 60 ng ml?1 solution and LOD of the proposed method were found to be 2.2% and 5.2 ng ml?1, respectively. The procedure was successfully applied to the determination of furazolidone in urine samples.  相似文献   

19.
The applicability of commercial screen-printed gold electrodes (SPGEs) for the determination of Hg(II) in ambient water samples by square wave anodic stripping voltammetry has been demonstrated. Electrode conditioning procedures, chemical and instrumental variables have been optimized to develop a reliable method capable of measuring dissolved mercury in the low ng mL−1 range (detection limit 1.1 ng mL−1), useful for pollution monitoring or screening purposes. The proposed method was tested with the NIST 1641d Mercury in Water Standard Reference Material (recoveries 90.0–110%) and the NCS ZC 76303 Mercury in Water Certified Reference Material (recoveries 82.5–90.6%). Waste water samples from industrial origin and fortified rain water samples were assayed for mercury by the proposed method and by a reference ICP-MS method, with good agreement. Screen printing technology thus opens a useful way for the construction of reliable electrochemical sensors for decentralized or even field Hg(II) testing.  相似文献   

20.
《Analytical letters》2012,45(5):947-956
Abstract

A new electrochemical substrate for horseradish peroxidase, methyl red, is reported. In this reaction system, horseradish peroxidase can catalyze the redox reaction of methyl red and H2O2. Methyl red exhibits a sensitive voltammetric peak at?0.51 V vs. Ag/AgCl reference electrode, the decrease of the peak current of methyl red is in proportion to the concentration of horseradish peroxidase (HRP). The linear range for determination of horseradish peroxidase is 5.0×10?8~5.0×10?7 g mL?1 and the detection limit is 1.8×10?8 g mL?1. The relative standard deviation is 3.3% when 2.0×10?7 g mL?1 HRP was sequentially determined 11 times. A voltammetric enzyme‐linked immunoassay method for the determination of estriol was developed, based on this electrochemical system. The linear range for determination of estriol is 1.0~1000.0 ng mL?1, and the detection limit is 0.33 ng mL?1. The relative standard deviation for 11 parallel determinations with 200 ng mL?1 estriol is 4.8%. Some pregnancy serum samples were analyzed with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号