首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
部分相干光在大气湍流中水平传输路径上的展宽与漂移   总被引:1,自引:0,他引:1  
基于部分相干高斯谢尔模型(GSM)光束在强湍流中的光束扩展半径,利用Andrews和Philips经典漂移方差模型推导了部分相干光在中强弱大气湍流中水平传输的漂移方差表达式,讨论了部分相干光在中、强、弱大气湍流中的展宽和漂移特性。结果表明:部分相干光的光束扩展受湍流的影响比受完全相干光的影响要小,初始半径越小的光束受到湍流的影响越大。短距离传输时,不同波长引起的光束漂移差别很小,且随着初始光束半径的增大这种差别随之减小。传输距离大于2km时,中强湍流中光束漂移均与波长有关且强湍流区漂移量较为明显。传输距离在10km内,光束空间相干长度大于0.005m时,光源空间相干长度对漂移的影响很小。  相似文献   

2.
数值模拟了拉盖尔-高斯涡旋光束在湍流大气中传输时的光强分布和光学涡旋的漂移。由模拟结果可知,当涡旋光束在湍流大气中传输时,光强分布由最初的环形结构变为平顶结构,最终在远场演化为高斯分布;光强廓线的演变过程与传输距离、湍流强度、湍流外尺度、涡旋光束拓扑荷数、束腰宽度以及光波长有关,与湍流内尺度无关。光学涡旋在接收面的不同位置处出现的频次满足高斯分布;随着传输距离的增加、湍流的增强或涡旋光束拓扑荷数的增加,光学涡旋的漂移范围增大且在不同位置处出现的频次偏离高斯分布;适当选择涡旋光束的束腰宽度会减小光学涡旋的漂移。  相似文献   

3.
完美涡旋(POV)光束具有光束半径与拓扑荷数无关的特点,与其他涡旋光束相比具有更加稳定的空间强度分布特性。利用多相位屏法和傅里叶变换法,分析了POV光束在大气湍流中的斜程传输特性。采用光束漂移和孔径平均闪烁指数作为大气湍流影响光束质量的评价参数,对比了POV光束与高斯涡旋光束在相同传输条件下的光束质量。结果表明:相比于高斯涡旋光束,POV光束的光束稳定性更好。当拓扑荷数增大或天顶角减小时,POV光束抵抗大气湍流的能力增强。在不改变POV光束拓扑荷数的前提下增大其光束半径,也能提高POV光束对大气湍流的抵抗能力。  相似文献   

4.
李晓庆  王涛  季小玲 《物理学报》2014,(13):194-198
采用空间光调制器产生球差光束,并利用旋转随机相位板模拟大气湍流,实验上研究了球差光束在大气湍流中的传输特性.研究表明:在自由空间传输时,正、负球差光束光强分布均为环形多层分布,但经过大气湍流传输后光强均会变为类高斯分布.正球差导致光束扩展,负球差会导致光束聚焦.正球差越大光束能量集中度越差.负球差对光束能量集中度的影响是非单调的.特别地,大气湍流会削弱球差效应对光束扩展的影响.  相似文献   

5.
利用相干叠加原理和广义Huygens-Fresnel 衍射积分公式,理论上研究了具有确定初始相位排列的激光束列阵通过大气湍流的传播特性.发现在近距离的传输过程中,列阵光束的光强分布会出现螺旋状分布(即光学涡旋).但由于大气湍流的影响,光束列阵远场涡旋特性随着传输距离的增加逐渐消失,成为无旋涡的实心光束;且当大气湍流变弱时,旋涡特性的有效传输距离逐渐变长. 关键词: 大气湍流 涡旋  相似文献   

6.
涡旋光束在湍流大气中传输时,其振幅和相位会发生随机起伏,导致在接收平面处的光强起伏及光束扩展等。以低阶拉盖尔-高斯涡旋光束为例,利用激光大气传输四维程序数值模拟了不同条件下的涡旋光束在湍流大气中传输时引起的光束扩展。由模拟结果可知,传输距离越长或湍流越强,涡旋光束在大气中传输时的束宽扩展受湍流的影响越大;涡旋光束的拓扑荷数越高、光束的束腰越小或光波的波长越长,其束宽扩展受大气湍流的影响越小。湍流的内尺度和外尺度也会影响涡旋光束的光束扩展,但影响程度相对较小。另外,通过计算仿真还比较了涡旋光束和普通高斯光束在湍流大气中传输时引起的光束扩展的差异。  相似文献   

7.
基于Andrews和Philips经典漂移方差模型,利用部分相干高斯-谢尔光束在大气湍流中斜程传输的光束扩展半径,推导出考虑外尺度情况时部分相干高斯-谢尔光束斜程情况下的漂移方差表达式,应用随高度变化的大气结构常量模型进行数值计算,对比分析了部分相干光和完全相干光在大气湍流中的展宽和漂移特性.结果表明:相同的传输条件下,部分相干光比完全相干光的光束扩展更迅速,受湍流的影响也更小;初始半径越大,接收机高度越高,光束的扩展效应越小;随着传输距离的增大,光束的质心漂移方差随光束初始半径的增大而减小,不同相干性的光束漂移方差变化很小;完全相干光的光束漂移受波长的影响较小,而部分相干光的波长越长,漂移越明显.  相似文献   

8.
基于广义惠更斯-菲涅耳原理,推导了贝塞尔高斯涡旋光束在湍流大气中传输时系统平均光强的解析表达式,研究了贝塞尔高斯空心涡旋光束在湍流大气中的光强传输特性,同时分析了大气湍流的强弱、涡旋光束的拓扑荷等对光束质量的影响.结果表明:贝塞尔高斯涡旋光束在大气湍流中传输时,光强分布经历几个连续的变化,相位奇异性也会在传输过程中消失,该过程与涡旋光束拓扑荷的数目、光束的束腰宽度以及大气湍流的强弱等因素密切相关.拓扑荷数目高的涡旋光束在湍流大气中传输时,其奇异性的保持较拓扑荷数目低的涡旋光束要好.另外,基于桶中功率理论,分析研究了涡旋光束的拓扑荷数目、大气湍流强弱和束腰宽度对贝塞尔高斯涡旋光束在大气湍流中传输时的光束质量的影响.  相似文献   

9.
为比较两种不同类型涡旋光束在大气湍流中的传输特性,利用菲涅耳衍射积分公式,推导了涡旋光束在湍流大气中的传输表达式。采用随机相位屏法建立了涡旋光束在大气湍流中的传输模型,计算了不同参数下涡旋光束的强度分布以及光束质量。结果表明:传输距离、拓扑荷数和湍流强度都会对涡旋光束光束质量产生影响。其中,传输距离对超高斯涡旋光束的光束质量的影响更大,而拓扑荷数则对高斯涡旋光束的光束质量的影响更明显。  相似文献   

10.
为了研究涡旋光束和高斯光束在水下湍流中的闪烁特性,搭建了一套含有水下湍流的实验系统,利用循环泵控制水槽内湍流的强弱,使用闪烁仪测量光束的闪烁因子。利用这套实验系统,详细研究了涡旋光束和高斯光束在水下传输时的闪烁因子。研究结果表明,涡旋光束和高斯光束的闪烁因子随着传输距离的增大而增大,并且随着水下湍流强度增大,涡旋光束和高斯光束对应的闪烁因子也越大。在12.6m的传播距离内,拓扑电荷m=2的涡旋光束的闪烁因子远大于高斯光束的闪烁因子。另外,在不同强度的水下湍流中,拓扑荷数m=6的涡旋光束传播到5.4m时,其径向闪烁因子都先减小然后再增大。此外,拓扑荷数m=6的涡旋光束经过一定距离的传播后,其闪烁因子低于拓扑荷数m=4的涡旋光束的闪烁因子。本文研究结果对探索涡旋光束在海洋湍流中的应用具有重要价值。  相似文献   

11.
仓吉  张逸新 《光子学报》2009,38(5):1277-1282
基于广义惠更斯-菲涅耳原理和相位结构函数的平方近似,研究了部分相干高斯-谢尔模型涡旋光束被聚焦后在大气湍流中的传输特性,得到了焦平面上光强解析表达式.利用该表达式,详细研究了该类光束在大气湍流中传输焦平面上的光强分布特性.结果表明:在大气湍流中,随着传输距离的增加,涡旋光束的奇异性逐渐降低.对于拓扑荷大的以及空间相干长度较长的涡旋光束,光束奇异性的保持相对要好.在一定的焦距长度和湍流大气条件下,我们可以通过调整光源的拓扑荷和相干长度控制焦面光强分布和焦斑大小.另外,有一定拓扑荷的涡旋光束可以在一定程度上降低大气湍流对传输光束焦面光强分布的影响.  相似文献   

12.
大气湍流像差散焦和像散与高斯涡旋光束焦面光强   总被引:1,自引:0,他引:1       下载免费PDF全文
分别研究了构成大气湍流波像差中的散焦和像散两个低阶像差对高斯涡旋激光束传输和成像的影响.采用菲涅耳-基尔霍夫衍射积分理论和大气湍流波相位结构函数的平方近似研究了聚焦高斯涡旋光束在大气湍流中散焦和像散影响下焦面光强的分布特性.导出了斜程传输条件下接收面上平均光强分布的积分表达式,并采用数值模拟方法研究湍流强度、传输距离和拓扑电荷对焦面光强的调制规律.结果表明:在弱湍流起伏区域,散焦和像散两类像差对高斯涡旋光束的光强分布影响都很小,可以忽略;在中等湍流区域,随着光束传输距离和湍流强度的增加,两类像差都导致高斯涡旋光束的光强峰值降低、束径扩展、中心暗斑扩大.当单拓扑电荷高斯涡旋光束传输时,在同等传输条件下,像散导致的光强峰值降低比散焦更严重,主亮斑区域外的次级亮环强度更大,光斑和中心暗斑扩展更明显.与单拓扑电荷光束相比较,散焦和像散导致双拓扑电荷光束的扩展更加明显,中心光斑更大,亮环区域外的次级亮环更明显;但是,由于光的相干性的降低和光束的偏折效应,像散导致光束中心的暗斑变为次级亮斑.  相似文献   

13.
本文在考虑湍流内外尺度的情况下,对部分相干高斯谢尔模型光束在大气湍流中的传输特性进行了研究.主要采用考虑湍流内外尺度的修正Von Karmon谱模型,推导了部分相干光在大气湍流中的平均光强分布、光束扩展均方根束宽和漂移方差的解析式.对比分析了不同湍流强度情况下,湍流内外尺度对部分相干光在大气湍流中水平和斜程路径上传输特性的影响.结果表明:相同条件下,光束在大气湍流中传输时,沿斜程传输时的抗湍流能力强于水平传输;相比于大气湍流内尺度,大气湍流外尺度对光束漂移影响较大,外尺度对光束扩展与光强分布的影响较小,当湍流外尺度增大时,漂移现象会越来越严重;相比于大气湍流外尺度,湍流内尺度对光束扩展与光强分布的影响较大,当内尺度减小时,光束扩展现象越来越严重,光强分布也更分散,内尺度对漂移几乎无影响.  相似文献   

14.
李晋红  吕百达 《物理学报》2011,60(7):74205-074205
基于广义惠更斯-菲涅耳原理,以高斯-谢尔模型(GSM)涡旋光束作为典型的部分相干涡旋光束,推导出GSM涡旋光束通过大气湍流斜程传输的平均光强、均方根束宽和交叉谱密度函数的解析表达式,并用以研究了大气湍流中上行和下行对GSM涡旋光束传输和对相干涡旋的影响.结果表明,在相同条件下,GSM涡旋光束下行传输受大气湍流的影响要小于上行传输,下行传输时相干涡旋拓扑电荷守恒距离要长于上行传输.对所得结果做了物理解释. 关键词: 部分相干涡旋光束 相干涡旋 大气湍流 上行和下行传输  相似文献   

15.
基于功率谱反演法产生海洋湍流相位屏,对多次传输过程进行统计平均,仿真分析不同海洋湍流参量下不同高斯阵列光束(矩形分布、径向分布及单束)长曝光光斑半径、光斑质心漂移特性及光强闪烁特性。结果表明:光束长曝光光斑半径、光斑质心漂移标准差及轴上闪烁系数均随湍流效应(湍流强度或传输距离)的增强而增大;同时,阵列光束与单束高斯光的光斑半径趋于一致,当传输距离继续增大时,单束高斯光束长曝光光斑半径略大。相对于单束高斯光,阵列光束在相同湍流条件下具有更小的漂移标准差,但轴上闪烁系数较大。相对于大气湍流而言,海洋湍流具有较强的闪烁效应。  相似文献   

16.
基于广义Huygens-Fresnel原理,利用Collins公式,讨论了偏振部分相干激光波束在湍流大气中传输的交叉谱密度函数,推导出经过偏振后的高斯-谢尔模型光束在外场不同距离水平传输时,光谱强度、束腰宽度及重心位置漂移的解析表达式.对偏振激光在大气湍流中传输时光束扩展和漂移进行数值仿真,得到相同传输距离下,偏振角、初始束腰及波长取不同值时,激光波束的扩展和漂移的变化情况.分析了相同偏振角度下,不同传输距离对光束扩展和漂移的影响.研究结果表明:大气湍流中偏振激光波束的扩展和漂移依赖于波束的波长、初始光束的偏振角和初始束腰;随着偏振角的变化,偏振部分相干激光波束的扩展和漂移关于45°呈现对称变化,当波束初始束腰小于或等于0.5mm时,大气湍流对波束扩展和漂移的影响明显.  相似文献   

17.
光束在湍流大气中传输,由于大气湍流的存在,光束的波前随着传输距离的增加将会破坏,不利于在终端对光束携带信息的提取。论文基于广义惠更斯-菲涅耳原理,以携带有一端被限制的刃型位错和光涡旋的高斯光束为研究对象,探究了湍流大气传输中一段被限制的刃型位错和光涡旋的演化行为。研究发现,由于刃型位错的弯曲度不同,随着光束传输距离的增加,一端被限制的刃型位错消失或者消失后演化为光涡旋。随着传输距离的继续增加,光束波前将会出现由大气湍流诱导产生的光涡旋。当光束传输足够远,大气湍流诱导产生的光涡旋会和刃型位错演化的光涡旋发生湮灭,或者大气湍流诱导的光涡旋之间发生湮灭。光束本身携带的光涡旋在整个传输过程中稳定传输。论文研究结果在光通信中具有重要的应用。  相似文献   

18.
高明  李战斌 《应用光学》2009,30(2):225-228
研究特殊函数在激光湍流大气传输光束漂移效应中的应用,为提高跟瞄系统的瞄准精度提供理论依据。基于特殊函数和修正Von Karman谱,对斜程湍流大气传输光束漂移方差表达式进行了数值仿真。数值模拟表明,特殊函数高次项的近似舍去对激光湍流大气传输光束指向精度影响甚微。在外尺度较小时,光束漂移方差变化较快;随着外尺度的增加,光束漂移增加缓慢且趋于饱和。在相同的外尺度下,发射孔径(初始光束束径)与发射天顶角的增大对光束漂移具有抑制作用,且天顶角接近π/2,光束漂移角方差快速减小。  相似文献   

19.
通过实验研究了拉盖尔-高斯涡旋光束及其叠加态在水下湍流中的传输特性,充分考虑了不同温度差和盐度差的水流扩散产生的湍流对4种光束(高斯光束,阶数为0、拓扑荷数为6的拉盖尔-高斯涡旋光束,阶数为1、拓扑荷数为2与阶数为0、拓扑荷数为6的拉盖尔-高斯涡旋光叠加,阶数为1、拓扑荷数为2与阶数为0、拓扑荷数为10的拉盖尔-高斯涡旋光叠加)传输的影响,并对4种光束的漂移方差和闪烁指数进行深入讨论与分析。实验结果表明:随着湍流强度的增大,4种光束的漂移方差和闪烁指数都增大,相比其他3种光束,拉盖尔-高斯涡旋光束的漂移方差和闪烁指数较小;在较弱的湍流强度下,两种涡旋光叠加态的漂移方差和闪烁指数与拉盖尔-高斯涡旋光束相近。  相似文献   

20.
李成强  王挺峰  张合勇  谢京江  刘立生  郭劲 《物理学报》2014,63(10):104201-104201
根据光束扩展理论,以部分相干的电磁高斯-谢尔光束为研究对象,分析了电磁光束传输时其偏振特性的变化机理.结果表明,光源参数和大气湍流对电磁光束分量扩展的影响是导致传输过程中电磁光束偏振特性变化的原因.在真空中传输时,电磁光束两分量的相干性存在差异,导致传输时电磁光束两分量扩展快慢不同,从而引起传输路径上光束谱偏振度的变化.在大气湍流中,电磁光束两分量扩展的快慢与光源参数和大气湍流强度均有关,当传输路径较短时,电磁光束偏振变化主要与光源参数有关,变化特性与在真空中传输时的情况类似,而传输距离较远时,电磁光束偏振变化受大气湍流的影响明显,变化特性与在真空中传输时的情形存在不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号