首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
周静  刘存金  李儒  陈文 《物理学报》2012,61(6):67401-067401
采用异质叠层方式制备出一定厚度的Ca(Mg1/3Nb2/3)O3/CaTiO3(CMN/CT)叠层薄膜,研究了异质界面对薄膜结构、微观形貌及介电性能的影响及其规律.根据实验测试结果,提出CMN/CT叠层薄膜的模拟等效电路,建立介电常数和介电损耗的理论计算公式.结果表明:CMN/CT异质叠层薄膜具有完全正交钙钛矿结构,结构致密,厚度均匀,薄膜中存在独立的CMN和CT相.异质界面处存在过渡层,随着薄膜中异质界面个数增加,介电常数增大,介电损耗减小.减小界面过渡层的厚度,有利于提高CMN/CT叠层薄膜的介电性能.  相似文献   

2.
A comparison of structure and dielectric properties of TlSbS2 thin films, deposited in different thicknesses (400–4100 Å) by thermal evaporation of TlSbS2 crystals that were grown by the Stockbarger–Bridgman technique and the bulk material properties of TlSbS2 are presented. Dielectric constant ε 1 and dielectric loss ε 2 have been calculated by measuring capacitance and dielectric loss factor in the frequency range 20 Hz–10 KHz and in the temperature range 273–433 K. It is observed that at 1 kHz frequency and 293 K temperature the dielectric constant of TlSbS2 thin films is ε 1=1.8–6 and the dielectric loss of TlSbS2 thin films is ε 2=0.5–3 depending on film thickness. In the given intervals, both of dielectric constant and dielectric loss decrease with frequency, but increase with temperature. The maximum barrier height W m is calculated from the dielectric measurements. The values of W m for TlSbS2 films and bulk are obtained as 0.56 eV and 0.62 eV at room temperature, respectively. The obtained values agree with those proposed by the theory of hopping over the potential barrier. The temperature variation of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model since it obeys the ω s law with a temperature dependent s (s<1) and going down as the temperature is increased. The temperature coefficient of capacitance (TCC) and permittivity (TCP) are evaluated for both thin films and bulk material of TlSbS2.  相似文献   

3.
Barium strontium titanate (BST) thin films were prepared by RF magnetron sputtering. The dielectric constant-voltage curves and the hysteresis loops of BST thin films with different grain sizes and film thicknesses were investigated. When the grain size increases from 12 nm to 35 nm, remarkable increases in dielectric constant and tunability were observed. Above 12 nm, the BST films exhibited size effects, i.e. a decrease in maximal polarization (Pm) and an increase in coercive electric field (Ec) with reduction in grain size. In our investigation, the dielectric constant, tunability and maximal polarization increased as the film thickness increased. Furthermore, the size dependence of the dielectric constant and tunability of Ba0.6Sr0.4TiO3 thin films is determined by that of the maximal polarization and the coercive electric field.  相似文献   

4.
The thickness-dependent dielectric properties and tunability of pulsed laser deposited (Ba0.5Sr0.5)0.925K0.075TiO3 (BSKT) thin films with different thickness ranging from 80 to 300 nm has been investigated. Dielectric properties of the BSKT thin films are substantially improved as the BSKT film thickness increases, which can be explained by the model of a low-permittivity dead layer that is connected in series with the bulk region of the film. The estimated values of thickness and the average dielectric constant for the dead layer are 2.4 nm and 23.5, respectively, in a Pt/BSKT/Pt capacitor structure. The tunability and figure of merit increased with increasing film thickness, which are attributed to the change in lattice parameter and the dead layer effect.  相似文献   

5.
High-k polycrystalline Pr2O3 and amorphous LaAlO3 oxide thin films deposited on Si(0 0 1) are studied. The microstructure is investigated using X-ray diffraction and scanning electron microscopy. Optical properties are determined in the 0.75-6.5 eV photon energy range using spectroscopic ellipsometry. The polycrystalline Pr2O3 films have an optical gap of 3.86 eV and a dielectric constant of 16-26, which increases with film thickness. Similarly, very thin amorphous LaAlO3 films have the optical gap of 5.8 eV, and a dielectric constant below 14 which also increases with film thickness. The lower dielectric constant compared to crystalline material is an intrinsic characteristic of amorphous films.  相似文献   

6.
Se75Te25−xGax (x=0, 5, 10 and 15 at wt%) chalcogenide compositions were prepared by the well known melt quenching technique. Thin films with different thicknesses in the range (185–630 nm) of the obtained compositions were deposited by thermal evaporation technique. X-ray diffraction patterns indicate that the amorphous nature of the obtained films. The ac conductivity and the dielectric properties of the studied films have been investigated in the frequency range (102–105 Hz) and in the temperature range (293–333 K). The ac conductivity was found to obey the power low ωs where s≤1 independent of film thickness. The temperature dependence of both ac conductivity and the exponent s can be well interpreted by the correlated barrier hopping (CBH) model. The experimental results of the dielectric constant ε1 and dielectric loss ε2 are frequency and temperature dependent. The maximum barrier height Wm calculated from the results of the dielectric loss according to the Guintini equation, and agrees with that proposed by the theory of hopping of charge carriers over a potential barrier as suggested by Elliott for chalcogenide glasses. The density of localized state was estimated for the studied film compositions. The variation of the studied properties with Ga content was also investigated. The correlation between the ac conduction and the dielectric properties were verified.  相似文献   

7.
CdSe thin films were deposited on glass substrates using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature and ambient pressure. The relationship between refractive index and energy bandgap was investigated. The film thickness effect on the structural, morphological, optical and electrical properties of CdSe thin films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all the films exhibit polycrystalline nature with hexagonal structure and are covered well with glass substrates. The crystalline and surface properties of the films improved with increasing film thickness. The optical absorption studies revealed that the films are found to be a direct allowed transition. The energy bandgap values were changed from 1.93 to 1.87 eV depending on the film thickness. The electron effective mass (me?/mo), refractive index (n), optical static and high frequency dielectric constant (εo, ε) values were calculated by using the energy bandgap values as a function of the film thickness. The resistivity of the films changed between 106 and 102 Ω-cm with increasing film thickness at room temperature.  相似文献   

8.
The dielectric properties of MgO-Ta2O5 continuous composition spread (CCS) thin films were investigated. The MgO-Ta2O5 CCS thin films were deposited on Pt/Ti/SiO2/Si substrates by off-Axis RF magnetron sputtering system, and then the films were annealed at 350 °C with rapid thermal annealing system in vacuum. The dielectric constant and loss of MgO-Ta2O5 CCS thin films were plotted via 1500 micron-step measuring. The specific point of Ta2O5-MgO CCS thin film (post annealed at 350 °C) showing superior dielectric properties of high dielectric constant (k ∼ 28) and low dielectric loss (tan δ < 0⋅004) at 1 MHz were found in the area of 3-5 mm apart from Ta2O5 side on the substrate. The cation's composition of thin film was Mg:Ta = 0.4:2 at%.  相似文献   

9.
Ferroelectric Bi4Ti3O12 thin films with single phase and nanosized microstructure were prepared on Pt/Ti/SiO2/Si(111) substrate by metalorganic solution deposition using titanium butoxide and bismuth nitrate at relatively low annealing temperatures. The internal strain in Bi4Ti3O12 thin films was calculated from the peak shifts and broadening of XRD patterns. With increase in annealing temperature, the uniform strain decreased from positive to zero and then to negative, and the non-uniform strain decreased and was negative. The total strain was negative and in the range of -0.2%–-1.0%, from which the stress of the films was calculated to be about -1.4×109 N/m2. The mode values of strain decreased with increase in annealing temperature and increased with increase in film thickness. The dielectric constant increased with increase in annealing temperature and film thickness. The dielectric properties were interpreted by considering the influence of strain, grain size, and grain boundaries. The strain lowered the polarization and increased the dielectric constant. The larger the grain size and the thinner the grain boundary, the greater the dielectric constant. The influence of grain size and grain boundary was stronger than that of the strain. Received: 23 September 1998 / Accepted: 6 January 1999 / Published online: 24 March 1999  相似文献   

10.
In this work, nanocrystalline GaN film was grown on a c-plane sapphire substrate by metal-organic vapor phase epitaxy (MOVPE). The structural and optical properties of the nanocrystalline GaN thin film were studied. The morphological and structural properties of GaN film were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. According to the X-ray diffraction spectrum, a GaN film was formed with a wurtzite structure, which is the stable phase. The optical parameters were determined using spectrophotometric measurements of transmittance and reflectance in the wavelength range 200–2500 nm. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with a band gap of 3.34 eV. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple–Didomenico (WD) model. The single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε), the lattice dielectric constant (εL) and the free charge carrier concentration (N) were estimated. From the optical dielectric analysis, the optical conductivity, volume and surface energy loss functions were calculated. Moreover, the third-order nonlinear optical susceptibility χ(3) was also considered.  相似文献   

11.
Based on Landau-Devonshire (LD)-type phenomenological thermodynamic theory, the electric field dependence of the dielectric properties of tetragonal single-domain barium strontium titanate(Ba1-xSrxTiO3) films on cubic substrates is theoretically investigated by taking into account the high order terms of the polarization. At room temperature, the nonlinear dielectric responses of epitaxial Ba0.6Sr0.4TiO3 films are provided by adjusting the film thickness and growth temperature. The strong nonlinearity of relative dielectric constant and pyroelectric coefficient are attained around critical film thickness on MgO (69 nm) and LaAlO3 (132 nm) substrates or critical growth temperature on MgO (337 °C) substrate with respect to epitaxy-induced lattice misfit and thermal stresses during deposition. This can be explained that small compressive stresses are effective to support high nonlinearity of dielectric constant and pyroelectric coefficient for Ba0.6Sr0.4TiO3 films irrespective of whether they are on compressive substrate or tensile substrate. It is also predicted that a large tunability may be achieved by altering processing conditions, such as the film thickness and growth temperature for different substrates. Our theoretical results are in good agreement with the experimental data reported in literature.  相似文献   

12.
The effective dielectric constant, ε′2, of very thin films of erbium on sodium chloride substrates was determined from measurements of normal incidence reflectance and transmittance in the visible spectrum. ε′2 showed a maximum which moved to longer wavelengths as the film thickness increased. Electron microscopy revealed that the film islands grew flatter and more irregular with thickness. The shape factor of the islands, F, was calculated by a modified Maxwell-Garnett method and became smaller as the film thickness increased.  相似文献   

13.
Composite thin film is highly desirable for the dielectric applications. In order to develop composite thin film, a nanocomposite, in which nanosized CaCu3Ti4O12 (CCTO) particles are used as filler and P(VDF?CTrFE) 55/45 mol% copolymer is used as polymer matrix, is investigated. The contents of CCTO in the nanocomposites range from 0% to 50?vol%. The dielectric property of these nanocomposites was characterized at frequencies ranging from 100 Hz to 1 MHz and at temperatures ranging from 200 K to 370 K. A dielectric constant of 62 with a loss of 0.05 was obtained in nanocomposite with 50?vol% CCTO at room temperature at 1 kHz. At the phase transition temperature (??340?K) of the copolymer, a dielectric constant of 150 with a loss less than 0.1 was obtained in this nanocomposite. It is found that the dielectric loss of the nanocomposites is dominated by the polymer which has a relaxation process. Comparing to composites made using microsized CCTO, the nanocomposites exhibit a much lower dielectric loss and a lower dielectric constant. This indicates that the nanosized CCTO particles have a lower dielectric constant than the microsized CCTO particles.  相似文献   

14.
Low-frequency (102-105 Hz) dielectric properties of TbMnO3+xTiO2 (x=0.33, 1, 3) ceramic composites, which were fabricated by conventional solid-state reaction, were investigated from 360 to 77 K. Very high dielectric constants and interesting temperature dependence of the dielectric properties were observed in the present composite ceramics. When compared to the high dielectric loss of the polycrystalline TbMnO3, the loss of TbMnO3+xTiO2 (x=0.33, 1, 3) decreased with the increasing TiO2. Especially for TbMnO3+1TiO2, the dielectric loss decreased remarkably, while the dielectric constant was still very high, which are more favorable for practical applications.  相似文献   

15.
A simple but exact generalization of optical surface response formalism beyond the long wavelength approximation (LWA) is developed and evaluated within the hydrodynamic approximation for a nonlocal three layer model describing a metal film between a dielectric and a metallic substrate. In the LWA an explicit analytical formula for the ellipsometry ratio ρ = rp/rs in terms of bulk optical constants of the layer materials is given. Model calculations show that classical optics can reproduce nonlocal results only with a strange effective dielectric function of the film reflecting substrate properties up to large film thickness.  相似文献   

16.
ZnO thin films are prepared on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) at room temperature. Optical parameters such as optical transmittance, reflectance, band tail, dielectric coefficient, refractive index, energy band gap have been studied, discussed and correlated to the changes with film thickness. Kramers-Kronig and dispersion relations were employed to determine the complex refractive index and dielectric constants using reflection data in the ultraviolet-visible-near infrared regions. Films with optical transmittance above 90% in the visible range were prepared at pressure of 6.5 × 10−4 Torr. XRD analysis revealed that all films had a strong ZnO (0 0 2) peak, indicating c-axis orientation. The crystal grain size increased from 14.97 nm to 22.53 nm as the film thickness increased from 139 nm to 427 nm, however no significant change was observed in interplanar distance and crystal lattice constant. Optical energy gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. The transmission in UV region decreased with the increase of film thickness. The refractive index, Urbach tail and real part of complex dielectric constant decreased as the film thickness increased. Oscillator energy of as-deposited films increased from 3.49 eV to 4.78 eV as the thickness increased.  相似文献   

17.
Dielectric properties of polymer blend of polyvinylidenefluoride (PVDF) and polysulfone (PSF) of different wt. % have been studied to understand the molecular motion and their relaxation behavior in the frequency range of 100 Hz to 10 kHz at different temperatures between 30 and 190 °C. The dielectric constant of the blend decreased with frequency and increased with the increasing temperature and PSF content in the blend. The magnitude of dielectric loss also increased with increase in temperature and PSF content. The observed characteristic has been consistently explained in terms of dipolar motions and the plasticization effect brought about by blending of PSF with PVDF. At constant frequency and temperature, the blend follows a linear relationship between logarithm of their dielectric constant and different ratios of blend. The appearance of a peak for each concentration in dielectric loss suggests the presence of relaxing dipoles in the blend. In addition of PSF with PVDF, the peak shifts toward higher frequency side suggesting the speed up the relaxation process. AC dielectric data is also combined with thermally stimulated depolarization current (TSDC) data which is generally studied for low-frequency dielectric properties of polymers blends so as to produce the results in a wide frequency range. The glass transition temperature (Tg) of the blend was studied by differential scanning calorimetric technique (DSC), the Tg was compared and correlated with TSDC peak. The blend samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to study the formation of blend and micro structural properties of the materials. The shifting of peak toward lower diffraction angle side confirms the reduction in particle size with increasing amorphous content in the blend.  相似文献   

18.
Polymer nanocomposites with ferroelectric fillers are promising materials for modern power electronics that include energy storage devices. Ferroelectric filler, Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) nanopowder, was synthesized by sol-gel method. X-ray diffraction (XRD) studies confirmed the phase purity and the particle size distribution was determined by transmission electron microscopy (TEM). Extended aromatic ligand in the form of naphthyl phosphate (NPh) was chosen for surface passivation of BCZT nanoparticles. Surface functionalization was validated by thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and impedance spectroscopy using slurry technique. The dielectric constant of surface-passivated BCZT nanopowder was ~155, whereas pristine BCZT nanopowder dielectric constant could not be assessed due to high innate surface conductivity. Furthermore, BCZT–epoxy nanocomposite films were prepared and analyzed by differential scanning calorimetry (DSC), dielectric spectroscopy, dielectric breakdown strength (DBS), and scanning electron microscopy (SEM). Owning to stronger polymer–particle interface, dielectric measurements of 5 vol.% NPh surface functionalized BCZT–epoxy nanocomposites indicated improved DBS and glass transition temperature (Tg), reduced dielectric loss, and enhanced energy storage density compared to untreated BCZT–epoxy composites and pure epoxy. The energy storage density of 30 vol.% NPh surface functionalized BCZT–epoxy nanocomposite of 20 μm film thickness was almost three times that of pure epoxy polymer of identical film thickness.  相似文献   

19.
3 films were produced by KrF excimer-laser ablation. Films deposited on fused silica substrates were polycrystalline without preferential orientation and had cubic rather than tetragonal structure. BaTiO3/Au/Ti/fused silica films showed a large dielectric constant, which increased with the thickness of the film, but poor ferroelectric properties. This behavior seems to be related to the small size of grains. On (100)MgO substrates oriented films were obtained. BaTiO3/YBa2Cu3O7-δ/(100)MgO films showed a large dielectric constant also and improved ferroelectric properties. Although this indicates a larger degree of tetragonality, the tetragonal structure of single crystal BaTiO3 has not yet developed. Localized reduction and metallization of BaTiO3/(100)MgO films by means of Ar+-laser radiation was demonstrated. This technique allows to produce conducting patterns in a single-s tep process. Received: 6 January 1997/Accepted: 21 April 1997  相似文献   

20.
Multiferroic CoFe2O4 (CFO)/Bi0.97Ce0.03FeO3 (BCFO) coaxial nanotubes were prepared by a sol-gel template method. Transmission electron microscopy revealed that the coaxial nanotubes featured with inner CFO and outer BCFO nanotubes. Selected area electron diffraction confirmed the coexistence of spinel CFO and perovskite BCFO phases in the coaxial nanotubes. Vibrating sample magnetometer measurements showed that the saturated magnetization of the coaxial nanotubes was 3.3?emu/g, smaller than that of CFO nanotubes. The PE hysteresis loop of the coaxial nanotubes was of poor shape due to possible high conductivity in the inner CFO nanotubes. Dielectric measurements exhibited that the dielectric constant of the coaxial nanotubes decreased while the dielectric loss increased due probably to the small dielectric constant and high conductivity in the inner CFO nanotube. Ferroelectric and magnetic properties were simultaneously demonstrated in the CFO/BCFO coaxial nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号