首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Hemilability and nonrigidity in a series of mixed P,PS donor ligands has been studied in the complexes [Pd(P,PS)Cl2], [Pd(η3-C3H5)(P,PS)][SbF6], and [Rh(cod)(P,PS)][SbF6] (P,PS = Ph2P-Q-P(S)Ph2). The effect of bite angle, the rigidity of the ligand backbone, and the role of the ancillary ligands are discussed.  相似文献   

2.
The syntheses, structural characterizations and reactivity patterns of main group and late transition metal carbene complexes of the bis(phosphoranimino)methandiide, [C(Ph2PNSiMe3)2]2−, and the carbodiphosphorane, Ph3PCPPh3, are described and compared to previously reviewed early transition metal analogues. Bimetallic spirocyclic aluminum complexes of the former ligand are accessed by spontaneous double deprotonation of the central carbon atom of the parent, CH2(Ph2PNSiMe3)2, by two equivalents of AlMe3, whereas the synthesis of platinum complexes requires the intermediacy of the tetralithium dimer, [Li2C(Ph2PNSiMe3)2]2, and elimination of LiCl from a metal chloride precursor. In contrast to the early transition metal analogues, which are N,C,N-pincer, Schrock-type alkylidenes, the C,N-chelated platinum complexes are more akin to Fischer carbenes, and their chemistry is dominated by the nucleophilicity of free nitrogen atom and insertions into labile N–Si bonds. Chelated and pincer carbene complexes of rhodium result from single and double orthometallations, respectively, of the phenyl rings in Ph3PCPPh3; the latter compounds represent a wholly new class of C,C,C-pincer complexes. Electronic structure calculations show that the metal–carbon interaction in these compounds may be described as a dative, two-electron, C  M σ-bond. The free bis(phosphoranimino)methandiide and carbodiphosphorane ligands, while not having formal six valence electron resonance forms, may be thought of as having “pull–pull” Fischer carbene character, but the metal to which they become coordinated ultimately dictates their chemistry.  相似文献   

3.
The rhodium(I) complexes (Ph3P)2Rh(LL′), in which LL′ is an unsaturated chelate coordinating via L = S and L′ = N, O, P or S, have been prepared from RhCl(PPh3)3 by two routes.Direct substitution of one Ph3P and Cl? by the chelate anion gives (Ph3P)2Rh[Ph2PC(S)S] (L = S, L′ = P). Oxidative addition of an NH bond followed by reductive elimination of HCl results in (Ph3P)2Rh[Me2NC(S)NC(S)NMe2] (L = S, L′ = S), (Ph3P)2Rh[PhNC(S)NMe2] (L = S, L′ = N), (Ph3P)2Rh[Ph2PC(S)NPh) (L = S, L′ = P) and (Ph3P)2Rh[Ph2P(O)C(S)NPh] (L = S, L′ = O).Reaction of the complexes (Ph3P)2Rh(LL′) with CO gives (CO)(Ph3P)Rh(LL′) with CO trans to the chelate donor atom with the lowest trans-influence. Pt(PPh3)4 reacts with Me2NC(S)N(H)C(S)NMe2 and HN(Ph)C(S)PPh2, respectively, to give H(Ph3P)Pt[Me2NC(S)NC(S)NMe2] (L = S, L′ = S) and H(Ph3P)Pt[Ph2PC(S)NPh] (L = S, L′ = P).The coordinating atoms and their configurations have been assigned by IR 31P NMR and 1H NMR. Some trend in IR and 31P NMR paramaters are discussed.  相似文献   

4.
An overview is given on synthesis and structures of new bidentate phosphaalkene ligands [(RMe2Si)2CP]2E (E = O, NR, N?) and (RMe2Si)2CPN(R′)PR′′2. Exceptional properties of these ligands, extending beyond predictable properties of phosphaalkenes are: (i) the NSi bond cleavage of [(iPrMe2Si)2CP]2NSiMe3 with AuI and RhI chloro complexes under mild conditions leading to binuclear complexes of the 6π-delocalised imidobisphosphaalkene anion [(iPrMe2Si)2CP]2N?, and (ii) the chlorotropic formation of molecular 1:2 PdII and PtII metallochloroylid complexes with novel ylid-type ligands [(RMe2Si)2CP(Cl)N(R)PR2]?, and the transformation of a P-platina-P-chloroylid complex into a C-platina phosphaalkene by intramolecular chlorosilane elimination. Properties of the heavier congeners [(RMe2Si)2CP]2E (E = S, Se, Te, PR, P?, As?) and (RMe2Si)2CPEPR′′2 (E = S, Se, Te) are also described.  相似文献   

5.
Chiral shift 31P NMR spectroscopy allows the identification of ligand leads in asymmetric catalyst systems for ZnMe2 addition to ArCHNP(O)Ph2. Subsequent GC-based optimisation shows [RhCl(CH2CH2)2]2 and (R,R)-MeDuPhos to be the optimal pre-catalyst combination (product in 78–93% ee). Transmetallation of [(MeDuPhos)Rh{N(P(O)Ph2–CHMeAr}] with ZnMe2 appears to be the rate limiting step of the catalytic cycle as competing coordination by the imine starting material leads to Ph2P(O)NHCH2Ar via MVP hydrogen-transfer. This limitation can largely be overcome by the slow addition of the imine.  相似文献   

6.
The RuC bond of the bis(iminophosphorano)methandiide-based ruthenium(II) carbene complexes [Ru(η6-p-cymene)(κ2-C,N-C[P{NP(O)(OR)2}Ph2]2)] (R = Et (1), Ph (2)) undergoes a C–C coupling process with isocyanides to afford ketenimine derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNR′)[P{NP(O)(OR)2}Ph2]2)] (R = Et, R′ = Bz (3a), 2,6-C6H3Me2 (3b), Cy (3c); R = Ph, R′ = Bz (4a), 2,6-C6H3Me2 (4b), Cy (4c)). Compounds 34ac represent the first examples of ketenimine–ruthenium complexes reported to date. Protonation of 34a with HBF4 · Et2O takes place selectively at the ketenimine nitrogen atom yielding the cationic derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNHBz)[P{NP(O)(OR)2}Ph2]2)][BF4] (R = Et (5a), Ph (6a)).  相似文献   

7.
This paper studied the mechanism of the alkene insertion elementary step in the asymmetric hydroformylation (AHF) catalyzed by RhH(CO)2[(R,S)-Yanphos] using four alkene substrates (CH2=CH- Ph, CH2=CH-Ph-(p)-Me, CH2=CH-C(==O)OCH3 and CH2=CH-OC(=O)-Ph, abbreviated as A1-A4). Interestingly, the equatorial vertical coordination mode (A mode) with respect to the Rh center was found for AI and A2 but not for A3 and A4, although the equatorial in-plane coordination mode (E mode) was found for A1 -A4. The relative energy of the E mode of the -q2-intermediates is lower than that of the A mode. In the alkene insertion step, Path 1 is more favorable than Path 2 for this system. As for AI and A2, there could be a transformation between 2eq and 2ax.  相似文献   

8.
《Comptes Rendus Chimie》2016,19(3):320-332
1,3-dipolar cycloaddition of diaryldiazomethanes Ar2CN2 across Cl3C–CHN–CO2Et 1 yields Δ3-1,2,4-triazolines 2. Thermolysis of 2 leads, via transient azomethine ylides 3, to diaryldichloroazabutadienes [Ar(Ar')CN–CHCCl2] 4. Treatment of 4a (Ar = Ar' = C6H5) and 4c (Ar = Ar' = p-ClC6H4) with NaSR in DMF yields 2-azabutadienes [Ar2CN–C(H)C(SR)2] 5. In contrast, nucleophilic attack of NaStBu on 4 affords azadienic dithioethers [Ar2CN–C(StBu)C(H)(StBu)] (7a Ar = C6H5; 7b Ar' = p-ClC6H4). The reaction of 4a with NaSEt conducted in neat EtSH produces [Ph2CN–C(H)(SEt)–CCl2H] 8, which after dehydrochloration by NaOMe and subsequent addition of NaSEt is converted to [Ph2CN–C(SEt)C(H)(SEt)] 7c. Upon the reaction of 4c with NaSiPr, the intermediate dithioether [(p-ClC6H4)2CN–CHC(SiPr)2] 5k is converted to tetrakisthioether [(p-iPrSC6H4)2CN–CHC(SiPr)2] 6. Treatment of 4a with the sodium salt of piperidine leads to [Ph2CN–CHC(NC5H10)2] 10. The coordination of 6 on CuBr affords the macrocyclic dinuclear Cu(I) complex 11. The crystal structures of 5i, 7a,b, 10 and 11 have been determined by X-ray diffraction.  相似文献   

9.
By a combination of cyclodehydration of N-acyl amino acids with N,N′-diisopropylcarbodiimide (DIC) and non-classical Wittig olefination of the resultant 5(4H)-oxazolones with Ph3PCHCN and Ph3PCHCOOEt, 5-oxazoleacetonitriles and 5-oxazoleacetates were synthesized in one-pot in 41–85% and 57–70% yields, respectively.  相似文献   

10.
The reaction of RuTp(COD)Cl (1) with PR3 (PR3 = PPh2iPr, PiPr3, PPh3) and propargylic alcohols HCCCPh2OH, HCCCFc2OH (Fc = ferrocenyl), and HCCC(Ph)MeOH has been studied.In the case of PR3 = PPh2iPr, PiPr3 and HCCCPh2OH, the 3-hydroxyvinylidene complexes RuTp(PPh2iPr)(CCHC(Ph)2OH)Cl (2a) and RuTp(PiPr3)(CCHC(Ph2)OH)Cl (2b) were isolated.With PR3 = PPh2iPr and HCCCFc2OH as well as with PR3 = PPh3 and HCCCPh2OH dehydration takes place affording the allenylidene complexes RuTp(PPh2iPr)(CCCFc2)Cl (3b) and RuTp(PPh3)(CCCPh2)Cl (3c).Similarly, with PPh2iPr and HCCC(Ph)MeOH rapid elimination of water results in the formation of the vinylvinylidene complex RuTp(PPh2iPr)(CCHC(Ph)CH2)Cl (4).In contrast to the reactions of the RuTp(PR3)Cl fragment with propargylic alcohols, with HCC(CH2)nOH (n = 2, 3, 4, 5) six-, and seven-membered cyclic oxycarbene complexes RuTp(PR3)(C4H6O)Cl (5), RuTp(PR3)(C5H8O)Cl (6), and RuTp(PR3)(C6H10O)Cl (7) are obtained. On the other hand, with 1-ethynylcyclohexanol the vinylvinylidene complex RuTp(PPh2iPr)(CCHC6H9)Cl (8) is formed. The reaction of the allenylidene complexes 3ac with acid has been investigated. Addition of CF3COOH to a solution of 3ac resulted in the reversible formation of the novel RuTp vinylcarbyne complexes [RuTp(PPh2iPr)(C–CHCPh2)Cl]+ (9a), [RuTp(PPh2iPr)(C–CHCFc2)Cl]+ (9b), and [RuTp(PPh3)(C–CHCPh2)Cl]+ (9c). The structures of 3a, 3b, and 5b have been determined by X-ray crystallography.  相似文献   

11.
The calculations using the density functional theory (DFT) method were done on two diamagnetic oxo-bridged dinuclear rhenium complexes: [{Re(O)Br2(3,5-Me2pzH)2}2(μ-O)] (1) with a linear ORe–O–ReO core and [{Re(O)Br(3,5-Me2pzH)}2(μ-O)(μ-3,5-Me2pz)2] (2) with a bent Re2O3 unit (pzHmonodentate N-pyrazole and pzbidentate N,N′-pyrazole ligand). The optimized geometries of 1 and 2 agree with the X-ray structures. The MO sequence is almost the same for 1 with a linear ORe–O–ReO core and 2 with a bent Re2O3 unit. The bending of Re2O3 unit in 2 is a consequence of steric congestion introduced by two coordinated 3,5-dimethylopyrazole bridging ligands. Additional information about binding in the complexes 1 and 2 was obtained by NBO analysis.  相似文献   

12.
Pentacarbonyl dimethylamino(methoxy)allenylidene complexes of chromium and tungsten, [(CO)5MCCC(NMe2)OMe] (M = Cr (1a), W (1b)), react with 1,3-bidentate nucleophiles such as amidines and guanidine, H2N–C(NH)R (R = Ph, C6H4NH2-4, C6H4NO2-3, NH2), by displacing the methoxy substituent to give exclusively dimethylamino(imino)-allenylidene complexes, [(CO)5MCCC{NC(NH2)R}NMe2] (2a5a, 2b). Treatment of the chromium complexes 2a5a with catalytic amounts of hydrochloric acid or HBF4 gives rise to an intramolecular cyclization. Addition of the terminal NH2 substituent to the Cα–Cβ bond of the allenylidene chain affords pyrimidinylidene complexes 69 in high yield. In contrast to the chromium complexes 2a5a, the corresponding tungsten complex 2b could not be induced to cyclize due to the lower electrophilicity of the α-carbon atom in 2b. The dimethylamino(phenyl)allenylidene complex [(CO)5CrCCC(NMe2)Ph] (10) reacts with benzamidine or guanidine similarly to 1a. However, the second reaction step – cyclization to give pyrimidinylidene complexes – proceeds much faster. Therefore, the formation of an imino(phenyl)allenylidene complex as an intermediate is established only by IR spectroscopy. The analogous reaction of 10 with 3-amino-5-methylpyrazole affords, via a formal [3+3]-cycloaddition, a pyrazolo[1,5a]pyrimidinylidene complex 13. Compound 13 is obtained as two isomers differing in the relative position of the N-bound proton (1H or 4H). The related reaction of 10 with thioacetamide yields a thiazinylidene complex and additionally an alkenyl(amino)carbene complex.  相似文献   

13.
The structures and stability of the designed PNP pincer amido M(NO)2(PNP) and amino HM(NO)2(PNHP) complexes [M = V, Nb, and Ta, PNP = N(CH2CH2P(isopropyl)2)2, PNHP = HN(CH2CH2P(isopropyl)2)2] and their hydrogenation mechanisms for phenyl-substituted unsaturated functional groups have been explored at the B3PW91 level of density functional theory. Under H2 environment, these conjugated complexes can form equilibrium and fulfill the criteria of metal–ligand cooperated bifunctional hydrogenation catalysts. For the hydrogenation of Ph-CN, Ph-CHNH, Ph-CHNH-Ph, Ph-CHNCH2Ph, Ph-CCH, Ph-CHCH2, Ph-CHO, and Ph-COCH3, the reaction prefers either a two-step or one-step mechanism for the hydridic MH and protonic NH transfer. These results clearly show that the V, Nb, and Ta complexes are promising catalysts for the hydrogenation reactions, and these provide experimental challenges.  相似文献   

14.
A new strategy for the synthesis of 3-aryl-4-methyl-5-O-substituted isoxazolines via tandem catalytic isomerization of O-allyl systems to O-(1-propenyl) systems—1,3-dipolar cycloaddition (1,3-DC) to nitrile oxides is presented. The influence of the heteroatom in Ph-X-CHCHCH3 (X=O, S, or Se) on the regio- and stereoselectivity of ArCNO 1,3-cycloaddition to these dipolarophiles is analyzed as well. The dipolarophiles were obtained via [RuClH(CO)(PPh3)3]–, [RuH2(CO)(PPh3)]– or base (KOH/18-crown-6)-catalyzed double bond migration in corresponding allyl ethers, O-allyl acetals, PhS– and PhSe–allyl systems. Cycloadditions of nitrile oxides to O-(1-propenyl) systems were fully regioselective whereas in the reactions of ArCNO with the PhS–(1-propenyl) and PhSe–(1-propenyl) systems both possible regioisomers were formed. It was established that within the majority of dipolarophiles of ROCHCHCH3 type 1,3-DC is concerted, while for some dipolarophiles of RXCHCHCH3 (X=O and R=Ph3C, 2,3-dihydroxypropyl, tetrahydropyran-2-yl; X=S or Se and R=Ph) type 1,3-DC turns into a two-step reaction with simultaneous rotation about C–C bond. The results of the experiments have been analyzed theoretically using DFT calculations. The results of these calculations agreed well with the experimental data.  相似文献   

15.
The synthesis of the new cationic functionalized phosphane niobocene complexes [Nb(η5-C5H4SiMe3)2(P(CH2CO(C6H5))Ph2)(L)]Cl, LCO (3) or CNXylyl (4), and new phosphamido-niobocene complexes [Nb(η5-C5H4SiMe3)2(P{CO(C6H5)}Ph2)(L)]Cl, LCO (5), CNXylyl (6), [Nb(η5-C5H4SiMe3)2(P(COCH(C6H5)2)Ph2)(L)]Cl, LCO (7) or CNXylyl (8), has been achieved. The complexes were prepared by reaction of the Lewis base niobocene complexes [Nb(η5-C5H4SiMe3)2(PPh2)(L)], LCO (1) or CNXylyl (2), with the appropriate RX (PhCOCH2Cl, chloroacetophenone) and RCOX (PhCOCl, benzoyl chloride, Ph2CHCOCl, diphenylacetyl chloride) reagents through the formation of new P–C bonds in the corresponding nucleophilic substitution reactions. These processes afforded new metallophosphanes in which one of the substituents on the phosphorus atom contains a ketonic moiety. The presence of the carbonyl group in the coordination sphere of phosphorus increases the coordination possibilities of the phosphane and enriches the applications of these complexes.  相似文献   

16.
Olefin Metathesis for Metal Incorporation (OMMI) was used for the stoichiometric attachment of ruthenium to both small and large polyenes. The dinuclear complexes (PCy3)2C12RuCH(CHCH)nCHRu(PCy3)2Cl2 (n = 1, 2), were prepared by reacting 2 equiv. of the Grubbs first-generation catalyst (PCy3)2C12Ru(CHPh)) with 1 equiv. of the appropriate polyene (1,3,5-hexatriene for n = 1 and 1,3,5,7-octatetraene for n = 2). Use of excess hexatriene led to the formation of the monoruthenium complex (PCy3)2C12RuCHCH CHCHCH2. The mono- and di-ruthenium complexes exhibited marked differences in their spectroscopic and electrochemical properties, in addition to their ZE isomerization rates. Nucleophilic attack of PCy3 on the end CH2 of the mono complex was observed, leading to both isomerization and phosphonium products. Extending the OMMI strategy to the second-generation catalyst was also done, despite the reduced initiation rate. The more reactive catalyst (H2IMes)RuCl2(CHPh)(3-bromopyridine)2 allowed for ruthenium incorporation into polyacetylene, leading to the formation of polymers and oligomers with high ruthenium content.  相似文献   

17.
The reaction of trialkylphoshanes and amino-phosphanes with isothiocyanates yields adducts containing the zwitterionic thioamidyl-phosphonium P+C(S)N? functional group. Ligands containing this group were not previously studied, probably due to their instability towards dissociation, in the presence of metal species able to coordinate the P atom. The ligand EtNHC(S)Ph2PNPPh2C(S)NEt (HEtSNS) was obtained by reaction of Ph2PNHPPh2 with ethylisothiocyanate and proved to be very versatile: it can be protonated giving cation H2EtSNS+ and deprotonated forming the dianion–cation EtSNS?. HEtSNS and its derivatives behave as ligands showing five possible coordination fashions, S,N,S tridentate and S,S-bidentate (with a bite-angle varying from 180° to 90°), S-monodentate, S,S bridging and N,N,N interaction. Here we describe the coordination chemistry of HEtSNS, in particular towards Rh, Cu, Ag and Au, and some properties of its complexes which are still the only examples containing the P+C(S)N? zwitterionic group.  相似文献   

18.
The mixed ruthenium(II) complexes trans-[RuCl2(PPh3)2(bipy)] (1), trans-[RuCl2(PPh3)2(Me2bipy)](2), cis-[RuCl2(dcype)(bipy)](3), cis-[RuCl2(dcype)(Me2bipy)](4) (PPh3 = triphenylphosphine, dcype = 1,2-bis(dicyclohexylphosphino)ethane, bipy = 2,2′-bipyridine, Me2bipy = 4,4′-dimethyl-2,2′-bipyridine) were used as precursors to synthesize the associated vinylidene complexes. The complexes [RuCl(CCHPh)(PPh3)2(bipy)]PF6 (5), [RuCl(CCHPh)(PPh3)2(Me2bipy)]PF6 (6), [RuCl(CCHPh)(dcype)(bipy)]PF6 (7), [RuCl(CCHPh)(dcype)(bipy)]PF6 (8) were characterized and their spectral, electrochemical, photochemical and photophysical properties were examined. The emission assigned to the π–π1 excited state from the vinylidene ligand is irradiation wavelength (340, 400, 430 nm) and solvent (CH2Cl2, CH3CN, EtOH/MeOH) dependent. The cyclic voltammograms of (6) and (7) show a reversible metal oxidation peak and two successive ligand reductions in the +1.5-(?0.64) V range. The reduction of the vinylidene leads to the formation of the acetylide complex, but due the hydrogen abstraction the process is irreversible. The studies described here suggest that for practical applications such as functional materials, nonlinear optics, building blocks and supramolecular photochemistry.  相似文献   

19.
The mixed ruthenium(II) complexes trans-[RuCl2(PPh3)2(bipy)] (1), trans-[RuCl2(PPh3)2(Me2bipy)](2), cis-[RuCl2(dcype)(bipy)](3), cis-[RuCl2(dcype)(Me2bipy)](4) (PPh3 = triphenylphosphine, dcype = 1,2-bis(dicyclohexylphosphino)ethane, bipy = 2,2′-bipyridine, Me2bipy = 4,4′-dimethyl-2,2′-bipyridine) were used as precursors to synthesize the associated vinylidene complexes. The complexes [RuCl(CCHPh)(PPh3)2(bipy)]PF6 (5), [RuCl(CCHPh)(PPh3)2(Me2bipy)]PF6 (6), [RuCl(CCHPh)(dcype)(bipy)]PF6 (7), [RuCl(CCHPh)(dcype)(bipy)]PF6 (8) were characterized and their spectral, electrochemical, photochemical and photophysical properties were examined. The emission assigned to the π–π1 excited state from the vinylidene ligand is irradiation wavelength (340, 400, 430 nm) and solvent (CH2Cl2, CH3CN, EtOH/MeOH) dependent. The cyclic voltammograms of (6) and (7) show a reversible metal oxidation peak and two successive ligand reductions in the +1.5-(−0.64) V range. The reduction of the vinylidene leads to the formation of the acetylide complex, but due the hydrogen abstraction the process is irreversible. The studies described here suggest that for practical applications such as functional materials, nonlinear optics, building blocks and supramolecular photochemistry.  相似文献   

20.
A computational study at different levels of theory was performed for the not yet synthesized phosphastannaallenes >SnCP– in order to evaluate the strength of the SnC bond, the main postulated factor to stabilize such species, and the geometry in R2SnCPR derivatives. The influence of the substituents with various electronic effects (H, Me, Ph, F, Cl, OMe, SiMe3) at the Sn or P atoms of the SnCP unit on the SnC bond order was evaluated in the quest for a substituent that would stabilize the phosphastannaallenic unit. PC bond orders have also been calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号