首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic and electronic ground states of the polycrystalline perovskite compound La0.7Sr0.3Co0.9Mn0.1O3 have been studied using AC susceptibility, resistivity and neutron depolarization techniques. Results of neutron depolarization study establish the existence of ferromagnetic domains of ∼3 μm size below 180 K. The substitution of 10 at% Mn ions at the Co site in the compound La0.7Sr0.3CoO3 reduces the effective eg electron transfer and suppresses the double exchange interaction. The competition between the reduced ferromagnetic double exchange interaction and the coexisting antiferromagnetic interaction along with the random nature of substitution leads to a randomly canted ferromagnetic ground state for the substituted compound. Resistivity study confirms that the randomly canted ferromagnetic ground state is insulating.  相似文献   

2.
With Nd3+ doping and Ca2+, Sr2+ modulating in the sol–gel technique, a series of polycrystalline perovskite samples La0.7?xNdx(Ca,Sr)0.3MnO3 (x = 0, 0.05, 0.1, 0.15, 0.20, 0.25) was prepared, their maximum magnetic entropy changes were tuned to room temperature (ΔSH = ?1.47 J/kg K at 298 k for La0.45Nd0.25(Ca,Sr)0.3MnO3), an enhancement of the maximum magnetic entropy change (ΔSH = ?1.89 J/kg K at 315 k) and its refrigerant capacity (about 45.3 J/kg) had also been obtained under 9 kOe magnetic field variation for La0.55Nd0.15(Ca,Sr)0.3MnO3 contrast to La0.7(Ca,Sr)0.3MnO3.  相似文献   

3.
We have investigated the effect of B-site dopant on magnetic entropy change in perovskite manganite samples of La0.65Nd0.05Ca0.3MnO3, La0.65Nd0.05Ca0.3Mn0.9Cr0.1O3, and La0.65Nd0.05Ca0.3Mn0.9Fe0.1O3 prepared by sol–gel technique. The maximum ΔSH is in the order of −1.68 J/kg K and peaks at Curie temperature for La0.65Nd0.05Ca0.3MnO3 upon 10 kOe applied field change. For the sample with B-site dopant, a decrement of the maximum magnetic entropy change has been observed.  相似文献   

4.
Magnetization measurements of a La1/3Nd1/3Ca1/3MnO3 perovskite at magnetic field up to 6 T have revealed an anomalous behaviour – above 130 K the material exhibits a loop displacement about a field of 2 T. We assume that this is the result of an exchange interaction between ferromagnetic and antiferromagnetic phases in a magnetically inhomogeneous compound. At about 115 K a transition from a semiconducting to a metallic-like state has been observed.  相似文献   

5.
We present results of an electron paramagnetic resonance (EPR) study of Nd1−xSrxMnO3 with x=0.5 across the paramagnetic to ferromagnetic, insulator to metal transition at 260 K (Tc) and the antiferromagnetic, charge ordering transition (TN=Tco) at 150 K. The results are compared with those on Nd0.45Sr0.55MnO3 which undergoes a transition to a homogeneous A-type antiferromagnetic phase at TN=230 K and on La0.77Ca0.23MnO3 which undergoes a transition to coexisting ferromagnetic metallic and ferromagnetic insulating phases. For x=0.5, the EPR signals below Tc consist of two Lorentzian components attributable to the coexistence of two phases. From the analysis of the temperature dependence of the resonant fields and intensities, we conclude that in the mixed phase ferromagnetic and A-type antiferromagnetic (AFM) phases coexist. The x=0.55 compound shows a single Lorentzian throughout the temperature range. The signal persists for a few degrees below TN. The behaviour of the A-type AFM phase is contrasted with that of the two ferromagnetic phases present in La0.77Ca0.23MnO3. The comparison of behaviour of A-type AFM signal observed in both Nd0.5Sr0.5MnO3 and Nd0.45Sr0.55MnO3 with the two FM phases of La0.77Ca0.23MnO3, vis-à-vis the shift of resonances with respect to the paramagnetic phases and the behaviour of EPR intensity as a function of temperature conclusively prove that the Nd0.5Sr0.5MnO3 undergoes phase separation into A-type AFM and FM phases.  相似文献   

6.
Among the perovskite manganites, a series of La1?xCaxMnO3 has the largest magneto-caloric effect (MCE) (|ΔSm|max=3.2–6.7 J/kg K at ΔH=13.5 kOe), but the Curie temperatures, TC, are quite low (165–270 K). The system of LaSrMnO3 has quite high TC but its MCE is not so large. The manganites La0.7(Ca1?xSrx)0.3MnO3 (x=0, 0.05, 0.10, 0.15, 0.20, 0.25) have been prepared by solid state reaction technique with an expectation of large MCE at room temperature region. The samples are of single phase with orthorhombic structure. The lattice parameters as well as the volume of unit cell are continuously increased with the increase of x due to large Sr2+ ions substituted for smaller Ca2+ ions. The field-cooled (FC) and zero-field-cooled (ZFC) thermomagnetic measurements at low field and low temperatures indicate that there is a spin-glass like (or cluster glass) state occurred. The Curie temperature TC increases continuously from 258 K (for x=0) to 293 K (for x=0.25). A large MCE of 5 J/kg K has been observed around 293 K at the magnetic field change ΔH=13.5 kOe for the sample x=0.25. The studied samples can be considered as giant magneto-caloric materials, which is an excellent candidate for magnetic refrigeration at room temperature region.  相似文献   

7.
The electrical transport properties and the magnetoresistance of La0.7Ca0.3MnO3/La0.7Sr0.2Ca0.1MnO3 composites are investigated as a function of sintering temperature. On the basis of an analysis by X-ray powder diffraction and scanning electron microscopy we suggest that raising the sintering temperature enhanced the interfacial reaction and creates interfacial phases at the boundaries of the La0.7Ca0.3MnO3 and La0.7Sr0.2Ca0.1MnO3. Results also show that in 3 kOe, and at the Curie temperature, the magnetoresistance value of 14% was observed for the composite sintered at 1300 °C. Based on the phenomenological equation for conductivity under a percolation approach, which depends on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental resistivity—temperature data from 50-300 K and find that the activation barrier decreases as temperature is increased.  相似文献   

8.
It is found that samples of manganites La0.9Sr0.1MnO3 (single crystal), Eu0.7A0.3MnO3 (A=Ca, Sr; ceramics), and La0.1Pr0.6Ca0.3MnO3 and La0.84Sr0.16MnO3 (thin epitaxial films) that are either field-cooled (in a magnetic field) or zero-field-cooled differ in low-temperature magnetization, and the hysteresis loop of field-cooled samples exhibits a displacement. This displacement signifies that a ferro-antiferromagnetic state occurs in these samples. The exchange integral J~10?6 eV is calculated from this displacement, which describes the exchange Mn-O-Mn coupling through the interface ferromagnetic droplet-antiferromagnetic matrix. The magnetoresistance and volume magnetostriction of La1?x SrxMnO3 single crystals exhibit similar dependences on x, temperature, and the magnetic field in the vicinity of the Curie point, which points to the fact that these dependences are due to the same reason, namely, the occurrence of a magnetic two-phase ferro-antiferromagnetic state caused by strong s-d exchange.  相似文献   

9.
La0.7Sr0.3MnO3 films were prepared by dc sputtering on Si (100) substrate at different working pressure. The possibility of controlling the magnetic and transport properties of colossal magnetoresistance film is investigated, which has attracted great research interest for practical application. The as-grown film shows different magnetic, transport and magnetoresistance change at different working pressure at room temperature, which is quite attractive from technological point of view. Maximum magnetoresistance (MR) of ?5.56%, Curie temperature (Tc) of 325 K and metal insulator transition temperature (TMI) of 278 K was achieved at room temperature.  相似文献   

10.
La0.7Sr0.3MnO3 (LSMO) manganite thin films were grown by pulsed plasma deposition on silicon (Si) and gallium arsenide (GaAs) substrates covered by an amorphous oxide. Manganite films are characterized by polycrystalline structure. Ferromagnetic transition is above room temperature and for 50 nm thick film the Curie temperature was as high as 325 K and 305 K for LSMO/SiOx/Si and LSMO/AlOx/GaAs, respectively.  相似文献   

11.
Single crystals of La0.9Sr0.1MnO3 and La0.8Sr0.2MnO3 manganites are examined using magnetic resonance in the temperature range 80–370 K. It is found that magnetostatic oscillations arise near the Curie temperature. The possible reasons for the appearance of additional lines in the ferromagnetic resonance (FMR) spectrum are considered, and the anisotropy field and the type of crystalline magnetic anisotropy in the La0.8Sr0.2MnO3 compound are determined. It is shown that the crystalline magnetic anisotropy in the La0.9Sr0.1MnO3 compound exhibits specific features associated with its type of crystal structure.  相似文献   

12.
The cathodic performance of selected mixed-conducting electrodes, including perovskite-type SrMn0.6Nb0.4O3 ? δ, Sr0.7Ce0.3Mn0.9Cr0.1O3 ? δ and Gd0.6Ca0.4Mn0.9Ni0.1O3 ? δ, and Ruddlesden–Popper La2Ni0.5Cu0.5O4 + δ, LaSr2Mn1.6Ni0.4O7 ? δ, La4Ni3 ? xCuxO10 ? δ (x = 0–0.1) and La3.95Sr0.05Ni2CoO10 ? δ, was evaluated in contact with apatite-type La10Si5AlO26.5 solid electrolyte at 873–1073 K and atmospheric oxygen pressure. The electrochemical activity of porous nickelate-based layers was found to correlate with the concentration of mobile ionic charge carriers and bulk oxygen transport, thus lowering in the series La4Ni2.9Cu0.1O10 ? δ > La4Ni3O10 ? δ > La3.95Sr0.05Ni2CoO10 ? δ and decreasing on copper doping in K2NiF4-type La2Ni1 ? xCuxO4 ? δ. The relatively high overpotentials of nickelate-based cathodes, varying in the range ? 240 to ? 370 mV at 1073 K and current density of ? 200 mA/cm2, are primarily associated with surface diffusion of silica from La10Si5AlO26.5, which partially blocks the electrochemical reaction zone. As compared to the intergrowth nickelate materials, the manganite-based electrodes exhibit substantially worse electrochemical properties, in correlation with the level of oxygen-ionic and electronic conduction in Mn-containing phases. The effects of cation interdiffusion between the cell components as a performance-deteriorating factor are briefly discussed.  相似文献   

13.
We have grown La1.48Nd0.4Sr0.12CuO4/La0.67Sr0.33MnO3 (LNSCO/LSMO) bilayer structure on SrTiO3 (0 0 1) substrate. Both temperature dependences of resistivity and magnetization curves show anomalies between 60 < T < 80 K, where a low-temperature orthorhombic (LTO) to low-temperature tetragonal (LTT) structural transition is observed in LNSCO bulk crystal. It is suggested that the formation of domains in LSMO layer can relax the strains caused by the LTO–LTT transition in LNSCO layer.  相似文献   

14.
A systematic investigation of the structural, magnetic and electrical properties of a series of nanocrystalline La0.7SrxCa0.3−xMnO3 materials, prepared by high energy ball milling method and then annealed at 900 °C has been undertaken. The analysis of the XRD data using the Win-metric software shows an increase in the unit cell volume with increasing Sr ion concentration. The La0.7SrxCa0.3−xMnO3 compounds undergo a structural orthorhombic-to-monoclinic transition at x=0.15. Electric and magnetic measurements show that both the Curie temperature and the insulator-to-metal transition temperature increase from 259 K and 253 K correspondingly for La0.7Ca0.3MnO3 (x=0) to 353 K and 282 K, respectively, for La0.7Sr0.3MnO3 (x=0.3). It is argued that the larger radius of Sr2+ ion than that of Ca2+ is the reason to strengthen the double-exchange interaction and to give rise to the observed increase of transition temperatures. Using the phenomenological equation for conductivity under a percolation approach, which depends on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the resistivity versus temperature data measured in the range of 50-320 K and found that the activation barrier decreased with the raising Sr2+ ion concentration.  相似文献   

15.
In this paper, we present a study of magnetocaloric effect in the colossal magnetoresistance material (La0.5Gd0.2)Sr0.3MnO3. From the measurements of isothermal magnetization at different temperatures, we have discovered a large magnetic entropy change with a broad peak around Curie temperature (270.5 K) in (La0.5Gd0.2)Sr0.3MnO3 polycrystalline sample. Moreover, the maximum of magnetic entropy change exhibits a nearly linear dependence with applied high magnetic field. These results suggest that this material is a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

16.
The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 ? xNixO3 (x=0,0.02,0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+–O–Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x=0,0.02,0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg?K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 ? xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (~60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.  相似文献   

17.
The structural and magnetic ordering in La0.6Ca0.4MnO3 has been studied by neutron powder diffraction as a function of temperature between 15 and 300 K. The para-ferromagnetic transition at T∼250 K is accompanied by significant structural distortions in the form of octahedral Mn–O6 rotations. At 15 K, the total refined ferromagnetic moment on the Mn site was obtained as 3.1 μB, in reasonable agreement with the total expected average moment of mixed Mn3+/Mn4+ matrix.  相似文献   

18.
《Solid State Ionics》2006,177(19-25):1843-1848
The electrochemical performance of La0.58Sr0.4Co0.2Fe0.8O3−δ (L58SCF), La0.9Sr1.1FeO4−δ (LS2F) and LSM (La0.65Sr0.3MnO3−δ)/LSM–YSZ (50 wt.% LSM–50 wt.% ZrO2 (8 mol% Y2O3)) cathode electrodes interfaced to a double layer Ce0.8Gd0.2O2−δ (CGO)/YSZ electrolyte was studied in the temperature range of 600 to 850 °C and under flow of 21% O2/He mixture, using impedance spectroscopy and current density–overpotential measurements. The L58SCF cathode exhibited the highest electrocatalytic activity for oxygen reduction, according to the order: LS2F/CGO/YSZ  LSM/LSM–YSZ/CGO/YSZ < L58SCF/CGO/YSZ.  相似文献   

19.
The Hebb–Wagner polarization method with the electron blocking electrode has been discussed in this paper in aim to determine a partial ionic conductivity of Sr-doped lanthanum manganite. The “limiting current” in the proposed system was measured using the two-point DC technique with additional Pt electrode between LSM and blocking electrode. The electrochemical model based on bulk diffusion processes and Boltzmann statistics has been also described. The ionic conductivity calculated with the use of proposed model for La0.7Sr0.3MnO3+δ was 5.3×10−4 S cm−1 at 800 °C and the activation energy of ionic conductivity was found to be (0.60±0.02) eV. This result is in agreement with previous literature reports and indicates the workability of the modified Hebb–Wagner system.  相似文献   

20.
S. M. Yusuf 《Pramana》2004,63(1):133-141
We have investigated magnetic correlations in various CMR manganites on macroscopic, mesoscopic and microscopic length scales by carrying out DC magnetization, neutron depolarization, and neutron diffraction measurements. We present here the effect of substituting Mn with Fe and La with Dy in the ferromagnetic La0.7−xCaxMnO3 (x ∼ 0.3–0.33) compounds. Neutron diffraction has been used in order to characterize the long-range magnetic order and its gradual suppression by the substitution. Neutron depolarization study has been carried out in order to bridge the gap in our understanding regarding the nature of magnetic correlation obtained from the macroscopic and microscopic measurements. In particular, our study on La0.67Ca0.33Mn0.9Fe0.1O3 has established the fact that a true double exchange mediated spin-glass is insulating. In another study of La-site ionic size effect and its disorder in (La1−x Dy x )0.7Ca0.3MnO3, we have investigated the evolution of the length scale of magnetic ordering with a possible microscopic explanation and the results have been compared with that for the light rare earth substituted compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号