首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ground and excited state proton transfer reactions of a new orthohydroxy Schiff base, salicylidine-3,4,7-methyl amine (SMA) has been studied by means of absorption, emission and time resolved fluorescence spectroscopy in some polar protic and aprotic solvents at room temperature and 77K. The spectral behavior of SMA has been investigated both in neutral and basic conditions. The intramolecularly hydrogen bonded enol and zwitterion have been detected in pure methanol and ethanol, the anion is detected in basic condition. At 77K, SMA shows phosphorescence in pure methanol and ethanol. From nanosecond measurements and quantum yields of fluorescence, we have estimated the decay rates of proton transfer reaction in methanol and ethanol.  相似文献   

2.
Proton transfer processes of 4-hydroxy-3-formyl benzoic acid (HFBA) have been studied in a number of different protic solvents by means of absorption, emission and nanosecond transient spectroscopy at room temperature and 77K. Intermolecular interaction occurs in polar protic solvents only in presence of a base in the ground state whereas in the excited state, intermolecular complex formation and proton transfer occurs even in pure protic solvents. The dianion is detected in water, methanol, ethanol and TFE in presence of base. HFBA shows phosphorescence in pure ethanol at 77K. The occurrence of phosphorescence is due to rupture of the intramolecular bond and rotation of the formyl group. We have calculated quantum yields of fluorescence and also estimated decay rates from nanosecond measurements. The energetics of the ground and excited state proton transfer in HFBA have been investigated at the AM1 level of approximation. The ground singlet is predicted to have a large activation barrier on the proton transfer path, while the barrier height is much lower on the corresponding excited singlet surface.  相似文献   

3.
Ground and excited state inter- and intramolecular proton transfer reactions of a new o-hydroxy Schiff base, 7-ethylsalicylidenebenzylamine (ESBA) have been investigated by means of absorption, emission and nanosecond spectroscopy in different protic solvents at room temperature and 77 K. The excited state intramolecular proton transfer (ESIPT) is evidenced by a large Stokes shifted emission (approximately 11000 cm(-1)) at a selected excited energy in alcoholic solvents. Spectral characteristics obtained reveal that ESBA exists in more than one structural form in most of the protic solvents, both in the ground and excited states. From the nanosecond measurements and quantum yield of fluorescence we have estimated the decay rate constants, which are mainly represented by nonradiative decay rates. At 77 K the fluorescence spectra are found to be contaminated with phosphorescence spectra in glycerol and ethylene glycol. It is shown that the fluorescence intensity and nature of the species present are dependent upon the excitation energy.  相似文献   

4.
The proton transfer reaction and the spectroscopic properties of di-(2-hydroxy-3-formyl-5-tert butyl phenyl) methane (HFPM) have been examined in different nonpolar and polar solvents at room temperature and 77 K, by means of absorption, emission and time resolved fluorescence spectroscopy. In the ground state, the primary closed form has been identified in all the nonpolar and polar solvents and the anion is detected only in presence of base in some of the polar solvents. After photoexcitation, the excited state intramolecular proton transfer (ESIPT) is indicated by a large Stokes shifted emission (approximately 10,600 cm-1) in all the nonpolar and polar solvents used, except in water and ethylene glycol (EG). The ESIPT band is likely to be originated from the enol tautomer of the HFPM. Two types of anion and H-bonded complex have been detected in the excited state. In water and EG, only anion and H-bonded complex have been detected in the excited state. At 77 K, HFPM shows phosphorescence in pure ethanol, and in n-hexane in presence of triethylamine. It has been suggested that the appearance of phosphorescence is due to the rotation of the formyl group. The measured nonradiative decay rates have always been found to dominate in the decay processes of the excited state of HFPM. Some semiempirical calculations have been undertaken to rationalize the experimental findings.  相似文献   

5.
Abstract Phosphate anions quench the fluorescence of tyrosine at room temperature as a result of an excited-state proton transfer. At 77 K in frozen solutions the fluorescence of tyrosine is still quenched by phosphate anions but the phosphorescence emission is enhanced. No tyrosinate phosphorescence is detected. A mechanism is proposed to explain these results: excited-state proton transfer from tyrosine to phosphates is followed by intersystem crossing in tyrosinate anions with subsequent back-transfer of the proton in the triplet state.  相似文献   

6.
The phosphorescence characteristics (excitation and emission spectra and lifetimes) of acetophenone (AP), benzophenone (BP), p-aminobenzophenone (PABP) and Michler's ketone (MK) adsorbed on Whatman No. 1 filter paper were measured at various temperatures, and compared with the phosphorescence characteristics in different solvent glasses at 77 K. Both AP and BP phosphoresce on filter paper only at low temperature (208 K). The phosphorescence lifetimes of AP and BP are < 1 msec, indicating a (3)(n,pi(*)) lower triplet level for paper substrates. With PABP, the low lying triplet state in polar solvents is (3)(CT) and in non-polar solvents is (3)(n, pi(*)); PABP on filter paper results in spectral characteristics similar to those of PABP in polar solvents at 77 K. The lifetime of PABP is longer than that of BP, indicating a (3)(CT) low-lying triplet state. MK, like PABP, has strongly environment-dependent photophysical properties. MK, when adsorbed on filter paper, has an intense long-lived luminescence at room temperature, resulting in a limit of detection of 3 ng ml or 3 pg, and a linear dynamic range of over 3 orders of magnitude. MK appears to be strongly hydrogen-bonded to the filter paper. In studies in ethanol and other solvents, MK adsorbed on filter paper shows a dramatic change in its phosphorescence spectrum when the temperature is lowered from 298 K to 208 K; the phosphorescence peak moves to longer wavelengths and the intensity decreases. The temperature effect could arise from the presence of several conformers of MK or be due to different environmental sites or E-type delayed fluorescence. The low-lying triplet state of MK on filter paper is most likely a (3)(CT) state. Lowering the temperature appears to increase the phosphorescence intensity for ketones which phosphoresce in the (3)(n,pi(*)) triplet state, but affects it only slightly for analytes which phosphoresce in the (3)(pi,pi(*)) triplet state. Room-temperature phosphorescence seems to arise for aromatic ketones and aldehydes with low-lying (3)(pi, pi(*)) or (3)(CT) triplet states.  相似文献   

7.
A new orthohydroxy Schiff base, 7-ethylsalicylidenebenzylamine (ESBA) has been synthesised. The excited state intramolecular proton transfer (ESIPT) processes have been investigated by means of absorption, emission and nanosecond spectroscopy at room temperature and at 77 K in non polar solvents. The ESIPT is evidenced by a large Stokes shifted emission (11 000 cm−1) only at 77 K. From fluorescence and excitation spectra it is suggested that at least three different species are present in the excited state at room temperature. Our theoretical calculation at AM1 level confirm the cis-isomer to be the only viable form in the ground state.  相似文献   

8.
Two new orthohydroxy Schiff bases, 7-phenylsalicylidene benzylamine (PSBA) and 7-ethylsalicylideneaniline (ESA) have been synthesized. The excited state intramolecular proton transfer (ESIPT) and the structure of PSBA and ESA in its crystalline form and in the solvents n-hexane, n-heptane and 1,4-dioxane have been investigated by means of absorption, emission and nanosecond spectroscopy at room temperature and 77K. One ground state species has been detected both in neutral and basic solutions of both PSBA and ESA: the cis-enol form with an intramolecular hydrogen bond. The ESIPT and formation of keto tautomer are evidenced by a large Stokes shifted emission (approximately 12000 cm(-1)) at room temperature only in the case of ESA. On the other hand the keto tautomer is the predominant species at 77K in a solid matrix and as a solid sample at room temperature both in the case of ESA and PSBA. In the case of both ESA and PSBA the more intense, higher energy emission is due to the species which has not undergone ESIPT and attributed mainly due to cis-enol form. The trans-enol form is also observed by changing the excitation wavelength. Both the compounds are found to undergo a structural change to a zwitterionic and intermolecular hydrogen bonded form in the presence of a strong base like triethylamine. From the nanosecond measurements and quantum yield of fluorescence we have estimated the decay rates of proton transfer reaction in the case of PSBA. Our theoretical calculation at the AM1 level of approximation shows that the ground singlet state has a rather large activation barrier both in the case of PSBA and ESA. The barrier height is much lower on the corresponding excited singlet surface only in the case of ESA. The process is predicted to be endothermic in the ground state and exotherrmic in the excited singlet state.  相似文献   

9.
Emission and absorption spectra of aniline have been studied in different solvents at 300 K and 77 K. This molecule exhibits broad and structureless fluorescence and poorly resolved phosphorescence in glassy polar ethanol and non-polar methylcyclohexane and n-hexane matrices at 77 K. Unlike the behaviour in a polar medium, fluorescence is found to be more intense than phosphorescence in non-polar media. In contrast to the case of glassy matrices, aniline shows highly stuctured emission and excitation spectra in crystalline cyclohexane and benzene matrices at 77 K. Excited state dipole moment calculation shows that both the singlet states contain charge transfer character, which is responsible for the strong phosphorescence in polar glassy medium. Spectral analysis indicates that the aniline molecule is slightly distorted in both the singlet and triplet states. The marked reduction in phosphorescence intensity of this molecule observed in non-polar matrices, particularly in a benzene crystalline matrix, relative to that in an ethanol matrix, is attributable to the decreased intersystem crossing rate and increased non-radiative rate from the emitting triplet state.  相似文献   

10.
Excitation wavelength-dependent emission spectra of 4-methyl-2,6-diformylphenol (MFOH) and o-hydroxybenzaldehyde (OHBA) have been examined both in pure weakly polar aprotic solvents and in the presence of a base at room temperature and 77 K. It is shown that fluorescence quantum yield shape, position of the spectra, and number of conformers are dependent upon the excitation energy and also on the proton-accepting ability of the solvents. Fluorescence spectra cannot be correlated with the solvent dielectric properties. At 77 K, deactivation occurs via phosphorescence only at a particular experimental condition in all the solvents studied here. The decay rates are relatively slower in an environment where the probability of hydrogen bonding interaction is stronger.  相似文献   

11.
Photophysics of 1,8-naphthalimide (NAPMD) in different solvents has been delineated in this paper. Theoretically calculated bond distance of N–H and C=O groups rule out any intramolecular proton transfer in the excited state. Concomitant increase in negative charge on O atom compared to N atom and dipole moment hints at possible intramolecular charge transfer. Progressive redshift with polarity of solvents in emission and absorption spectra also confirms the theoretical prediction. Weakening of N–H bond helps hydrogen abstraction and anion formation in water with decay time of 2.54 ns through intermolecular proton transfer. This was corroborated from the ground state photoexcitation of laboratory synthesized anion of NAPMD. Amide hydrolysis in higher pH and excess proton availability at low pH are responsible for anion emission quenching. A possible electron transfer diminishes phosphorescence at 77 K with changing pH.  相似文献   

12.
Abstract— A detailed study has been made of the luminescence spectra of 3-β-d -ribofuranosyl-7-amino-pyrazolo(4,3-d)pyrimidine (formycin A), 3-propyl-7-aminopyrazolo(4,3-d)pyrimidine (7APP), and their various N-methyl derivatives, at room temperature and in methanol-water glasses at 77 K. Comparisons of the foregoing, together with the observed dependence of the emission spectra of formycin and 7APP on excitation wavelength, demonstrated that these consist of two tautomeric species, N(1)H and N(2)H, both of which emit at 300 and 77 K. The two tautomers may be distinguished by the location of the emission maxima, especially for phosphorescence, and quantum yields for emission. Comparisons of the emission spectra of the protonated forms of 7APP and its N-methyl derivatives showed that the fluorescence of the cations of 7APP and its N,- and N2-methyl derivatives originates from the forms protonated on N(4). By contrast, the forms protonated on N(6) contribute appreciably to the phosphorescence at 77 K. On the basis of the emission spectra at 77 K, it is concluded that the major tautomeric form of the formycin cation is N(1)H,N(4)H+, but there is also some contribution by the form N(2)H,N(4)H+. In acid medium at room temperature, there is photodissociation of a proton from the pyrazole ring of the formycin cation. This leads to formation in the state S! of the tautomeric species N(4)H, which does not exist in the ground state. This conclusion, similar to that previously reported for the analogous isomeric 4-aminopyrazolo(3,4-d)pyrimidines, is derived from a comparison of the fluorescence spectra of the cations of formycin and N4-methylformycin, which exhibit two bands at 375 and 440 nm, the latter corresponding to the emission of the neutral form of N,i-methylformycin. The proposed mechanism of phototautomerization is supported by a study of solvent and salt effects.  相似文献   

13.
The electronic absorption spectrum in the vapour state and in solution in different solvents in the region 3000–1900 Å and the fluorescence and phosphorescence emission spectra in ethanol or cyclohexane at 77 K have been studied for 2-fluoropyridine and analysed. Two systems of absorption band corresponding to the π→π* transition II and π→π* transition III have been observed and the excited state dipole moments have been determined from the solvent-induced shifts of the electronic absorption bands. The half-life of phosphorescence in cyclohexane at 77 K is found to be 3.5 s.  相似文献   

14.
The luminescence characteristics of 34 catecholamines and related compounds at room temperature and at 77 K are reported. Neutral, basic and acidic mixtures were used as solvents. Limits of detection, linear ranges and analytical precision were determined for each case. Analytically useful luminescence was obtained at 77 K. In neutral and acidic solutions, both fluorescence and phosphorescence could be used qualitatively and quantitatively; in basic solutions, the phosphorescence was valuable at concentrations as low as 106–10-9 M, depending on the compound.  相似文献   

15.
The synthesis, photophysics, electronic structure, and electrochemical characterization of 4'-tert-butylacetylene-2,2':6',2'-terpyridineplatinum(II) chloride (1), 4'-phenylacetylene-2,2':6',2'-terpyridineplatinum(II) chloride (2), and their Zn(II) analogs are described. The Pt(II) complexes display interesting photophysical properties, showing vibronically resolved emission spectra at room temperature in CH(2)Cl(2), resembling a ligand localized emission profile. The photophysics and (1)O2 sensitization experiments support a triplet state assignment for these emissions which are best described as an admixture of charge transfer and ligand localized components, which decay symmetrically with time as evidenced by time resolved emission spectra. Room temperature ligand-localized fluorescence emission is observed from the zinc complexes whereas phosphorescence emission from the (3)pi-pi* manifold was obtained at 77 K in 4 : 1 EtOH/MeOH matrices doped with 10% ethyliodide. Compounds 1 and 2 display long-lived emission at room temperature, the latter possessing a longer lifetime, higher quantum yield, and longer wavelength emission. Lowering the temperature from 298 K to 77 K induces an increase in the excited state lifetime of both platinum systems together with a blue shift in their respective emission maxima, concomitant with more pronounced vibronic structure. The data are consistent with configurationally mixed triplet excited states at room temperature which persists in 77 K glasses. The corresponding Zn(II) complexes display significantly higher energy ligand-localized phosphorescence at 77 K. This latter result suggests that the nature of the metal and/or coordination environment imparts a significant electronic pertubation into the ligand-localized triplet states of these conjugated terpyridyl structures.  相似文献   

16.
1,4-dinitronaphthalene in hydrocarbon media is non-fluorescent and shows a weak phosphorescence. In protic solvents a weak fluorescence, with intensification of phosphorescence, has been observed at 77 K. In hydrocarbon media, another energy-transfer route has been observed which quenches fluorescence and results in excimer emission.  相似文献   

17.
研究了1,3-二苯基吡唑啉(DPP)和1-苯基-3-(4-硝基苯基)吡唑啉(PNP)在室温及77K时不同溶剂中的荧光光谱,发现在非极性溶剂中77K时DPP的荧光强度远比其在室温时的低,而PNP则完全没有荧光,表明这些化合物激发态的构象松驰,形成非平面扭曲构象对分子的发光性质十分重要。同时发现这两个化合物具有不同的关键性扭曲部位,形成各自有利于发光的构象,N-1上及C-3上苯环的扭曲分别对DPP和PNP的发光态的形成起着重要作用。  相似文献   

18.
Abstract— The spectroscopy and photochemistry of brilliant green leucocyanide 1a were investigated at room and low temperature, in polar and nonpolar solvents. At 77 K, 1a exhibits solvent independent absorption, fluorescence (φ f = 0.1), and phosphorescence (φ p = 0.5). Solvent effects become important at room temperature; in polar solvents, φ f , decreases and photodissociation yielding brilliant green dye 3 occurs [φ dis ,(EtOH) ˜0.91. Dye formation and 1a fluorescence can be quenched by 0.1 M crotononitrile. Attempts to sensitize dye formation with triplet sensitizers were unsuccessful. The spectroscopy of 3 was also examined.  相似文献   

19.
The fluorescence and phosphorescence emission spectra of 31 polynuclear aromatic hydrocarbons and a number of heterocyclic compounds have been studied in tetrahydrofuran and in n-paraffin solvents at 77 K. A comparison of the characteristics of the quasi-linear luminescence emission observed in these solvents has been made. The effect of the presence of peroxide impurities in the tetrahydrofuran solvent on the emission spectrum observed for coronene has been investigated.  相似文献   

20.
Photothermal calorimetry and fluorescence spectroscopy were used to determine the relaxations of the photoexcited singlet state of two PPV and polyfluorene oligomers, (E,E)-1,4-bis[(2-benzyloxy)styryl]benzene (PVDOP) and ter(9,9'-spirobifluorene) (TSBF). The decay rates of different S1 relaxation channels, which include intersystem crossing (ISC), radiative, and nonradiative decay can be determined by the combination of photoacoustic calorimetry (PAC) and the time-correlated single photon counting (TCSPC) technique. The triplet state energy level is determined by the phosphorescence (Ph) spectra recorded at 77 K. The ISC yields are approximately 3% and 6% for PVDOP and TSBF, respectively. The T1 to S0 transition decay rate is acquired by PAC and photothermal beam deflection (PBD) measurements. The triplet state decay rate is 17 and 21 ms(-1) at room temperature. The Ph intensity decay at 77 K shows that the triplet state lifetime increases by 4 orders of magnitude, as compared to room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号