首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we are studying the intense laser effects on the electron-related linear and nonlinear optical properties in GaAs–Ga1?xAlxAs quantum wells under applied electric and magnetic fields. The calculated quantities include linear optical absorption coefficient and relative change of the refractive index, as well as their corresponding third-order nonlinear corrections. The nonlinear optical rectification and the second and third harmonic generation coefficients are also reported. The DC applied electric field is oriented along the hererostructure growth direction whereas the magnetic field is taken in-plane. The calculations make use of the density matrix formalism to express the different orders of the dielectric susceptibility. Additionally, the model includes the effective mass and parabolic band approximations. The intense laser effects upon the system enter through the Floquet method that modifies the confinement potential associated to the heterostructure. The results correspond to several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation. They suggest that the nonlinear optical absorption and optical rectification are nonmonotone functions of the dimensions of the heterostructure and of the external perturbations considered in this work.  相似文献   

2.
Laser effects on the electronic states in GaAs/ Ga1−xAlxAs V-shaped and inverse V-shaped quantum wells under a static electric field are studied using the transfer matrix method. The dependence of the donor binding energy on the laser field strength and the density of states associated with the impurity is also calculated. It is demonstrated that in inverse V-shaped quantum wells under electric fields, with an asymmetric distribution of the electron density, the position of the binding energy maximum versus the impurity location in the structure can be adjusted by the intensity of the laser field. This effect could be used to tune the electronic levels in quantum wells operating under electric and laser fields without modifying the physical size of the structures.  相似文献   

3.
In this work the effects of intense laser on the electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga1−xAlxAs quantum wells are studied under, applied electric and magnetic field. The electric field is applied along the growth direction of the quantum well whereas the magnetic field has been considered to be in-plane. The calculations were performed within the density matrix formalism with the use of the effective mass and parabolic band approximations. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Results are presented for the nonlinear optical absorption, the nonlinear optical rectification and the resonant peak of these two optical processes. Several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation have been considered. The outcome of the calculation suggests that the nonlinear optical absorption and optical rectification are non-monotonic functions of the dimensions of the heterostructure and of the external perturbations considered in this work.  相似文献   

4.
In this present study, the effects of electric and magnetic fields on the nonlinear optical rectification and second-harmonic generation in a graded quantum well under intense laser field have been investigated theoretically. The energy eigenvalues and their corresponding eigenfunctions are obtained by solving Schrödinger equation within the framework of effective mass approximation. The analytic expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. The numerical results are presented for a typical GaAs/Ga1?x Al x As quantum well. The results show that the nonlinear optical rectification and second-harmonic generation coefficients are considerably affected by the electromagnetic fields and intense laser field.  相似文献   

5.
The effect of laser field on the binding energy in a GaAs/Ga11−xAlxAs quantum well within the single band effective mass-approximation is investigated. Exciton binding energy is calculated as a function of well width with the renormalization of the semiconductor gap and conduction valence effective masses. The calculation includes the laser dressing effects on both the impurity Coulomb potential and the confinement potential. The valence-band anisotropy is included in our theoretical model. The 2D Hartree–Fock spatial dielectric function and the polaronic effects have been employed in our calculations. We investigate that reduction of binding energy in a doped quantum well due to screening effect and the intense laser field leads to semiconductor–metal transition.  相似文献   

6.
Using the effective mass and parabolic band approximations and a variational procedure we have calculated the combined effects of intense laser radiation, hydrostatic pressure, and applied electric field on shallow-donor impurity confined in cylindrical-shaped single and double GaAs-Ga1−xAlxAs QD. Several impurity positions and inputs of the heterostructure dimensions, hydrostatic pressure, and applied electric field have been considered. The laser effects have been introduced by a perturbative scheme in which the Coulomb and the barrier potentials are modified to obtain dressed potentials. Our findings suggest that (1) for on-center impurities in single QD the binding energy is a decreasing function of the dressing parameter and for small dot dimensions of the structures (lengths and radius) the binding energy is more sensitive to the dressing parameter, (2) the binding energy is an increasing/decreasing function of the hydrostatic pressure/applied electric field, (3) the effects of the intense laser field and applied electric field on the binding energy are dominant over the hydrostatic pressure effects, (4) in vertically coupled QD the binding energy for donor impurity located in the barrier region is smaller than for impurities in the well regions and can be strongly modified by the laser radiation, and finally (5) in asymmetrical double QD heterostructures the binding energy as a function of the impurity positions follows a similar behavior to the observed for the amplitude of probability of the noncorrelated electron wave function.  相似文献   

7.
Tunneling effect on the intersubband optical absorption in a GaAs/Al x Ga1- x As quantum well under simultaneous presence of intense non-resonant laser and static electric fields is theoretically investigated. Based on the shooting method the quasi-stationary energy levels and their corresponding linewidths are obtained. By considering the joint action of the two external fields the linear absorption coefficient is calculated by means of Fermi’s golden rule and taking into account the intersubband relaxation. We found that: (i) the linewidth broadening due to the electron tunneling has an appreciable effect on the absorption spectrum; (ii) a constant relaxation time adopted in the previous studies could not be justified even for moderate electric fields, especially in the laser dressed wells. Our model predicts that the number of absorption peaks can be controlled by the external applied fields. While in the high-electric fields the excited states become unbounded due to a significant tunneling of the electrons, for high laser intensities and low/moderate electric fields the absorption spectrum has a richer structure due to the laser-generated resonant states. The possibility of tuning the resonant absorption energies by using the combined effects of the static electric field and the THz coherent radiation field can be useful in designing new optoelectronic devices.  相似文献   

8.
By using a nonperturbative theory within the effective mass approximation, the combined effects of the intense laser radiation and applied magnetic field on the shallow-donor binding energy in inverse parabolic quantum wells are investigated. It is found that: (i) the increasing of the laser intensity dramatically modifies the confinement potential shape leading to the formation of a multiple well potential within the structure; (ii) the binding energy as a function of the impurity position and external fields follows a similar behavior to that observed for the spatial distribution of the electron wave function; (iii) the peak positions in valence-to-donor-related absorption spectra can be tuned at specific energies by changing the external field strengths. Our results suggest that this profile could be used in designing new devices with properties controlled by laser and magnetic fields.  相似文献   

9.
Double quantum well heterostructures are quite important for the exploration of correlated electron states in two-dimensional systems. By using the variational procedure, within the effective-mass and parabolic-band approximations, the effects of both electric field and hydrostatic pressure on the shallow-donor-impurity related polarizability and photoionization cross-section in GaAs–Ga1−xAlxAs double asymmetric quantum wells are presented. The electric field is considered to be applied along the growth direction. It is found that the impurity binding energy and polarizability can be tuned by means of an applied external electric field or hydrostatic pressure in asymmetric double quantum wells, a behavior which could be used in the design and construction of semiconductor devices. The photoionization cross-section magnitude increases as the pressure and applied electric field are increased, except beyond the ΓX crossover in the barrier material, where a decrease of the photoionization cross-section is expected due the smaller confinement of the impurity wave function.  相似文献   

10.
The theoretical study of the combined effects of electric and magnetic fields and hydrostatic pressure on the nonlinear optical absorption and rectification is presented for electrons confined within an asymmetrical GaAs?Ga1-x Alx As double quantum well. The effective mass, parabolic band, and envelope function approaches are used as tools for the investigation. The electric field is taken to be oriented along the growth direction of the heterostructure and the magnetic field is applied parallel to the interfaces of the quantum wells. The pressure-induced mixing between the two lowest conduction bands is considered both in the low and high pressure regimes. According to the results obtained it can be concluded that the nonlinear optical absorption and rectification coefficients depend in a non-trivial way on some internal and external parameters such as the size of the quantum wells, the direction of applied electric field, the magnitude of hydrostatic pressure, the stoichiometry of the wells and barriers, and the intensity of the applied magnetic field.  相似文献   

11.
In this work we study the binding energy of the ground state for a hydrogenic donor impurity in laterally coupled GaAs/Ga1−xAlxAs quantum well wires, considering the simultaneous effects of hydrostatic pressure and applied electric field. We have used a variational method and the effective mass and parabolic band approximations. The low dimensional structure consists of two quantum well wires with rectangular transverse section coupled by a central Ga1−xAlxAs barrier. Our results are reported for several sizes of the structure and we have taken into account variations of the impurity position along the growth direction of the heterostructure.  相似文献   

12.
A systematic study of binding energy of the ground state of a hydrogenic donor in a quantum well is calculated in the presence of a uniform electric field for different measure of laser intensities. Binding energy of the ground state of a donor is calculated, within the effective mass approximation, with the Bessel and Airy functions. Polarizability of a laser dressed donor impurity in the presence of electric field is reported. It is observed that the polarizability (i) increases as intensity of the laser field increases (ii) increases with the electric field strength and (iii) increases drastically when both the fields are applied. The dependence of the donor binding energy on the well width, the laser field intensity and the electric field is discussed. Our results are in good agreement with the previous investigations for other heterostructures in the presence of laser intensity.  相似文献   

13.
The combined effects of hydrostatic pressure and temperature on donor impurity binding energy in GaAs/Ga0.7Al0.3As double quantum well in the presence of the electric and magnetic fields which are applied along the growth direction have been studied by using a variational technique within the effective-mass approximation. The results show that an increment in temperature results in a decrement in donor impurity binding energy while an increment in the pressure for the same temperature enhances the binding energy and the pressure effects on donor binding energy are lower than those due to the magnetic field.  相似文献   

14.
Within the framework of the effective-mass approximation, using a variational method, we have calculated the effect of intense laser radiation on the binding energy of the shallow-donor impurities in a Ga1- x In x N y As1- y /GaAs single quantum well for different nitrogen and indium mole concentrations. Our numerical results show that the binding energy strongly depends on the laser intensity and frequency (via the laser dressing parameter) and it also depends on the nitrogen and indium concentrations. Impurity binding energy under intense laser fields can be tuned by changing the nitrogen and indium mole fraction.  相似文献   

15.
We have studied the behavior of the binding energy and photoionization cross-section of a donor-impurity in cylindrical-shape GaAs-Ga0.7Al0.3As quantum dots, under the effects of hydrostatic pressure and in-growth direction applied electric and magnetic fields. We have used the variational method under the effective mass and parabolic band approximations. Parallel and perpendicular polarizations of the incident radiation and several values of the quantum dot geometry have also been considered. Our results show that the photoionization cross-section growths as the hydrostatic pressure is increased. For parallel polarization of the incident radiation, the photoionization cross-section decreases when the impurity is shifted from the center of the dot. In the case of perpendicular polarization of the incident radiation, the photoionization cross-section increases when the impurity is shifted in the radial direction of the dot. For on-axis impurities the transitions between the ground state of the impurity and the ground state of the quantum dot are forbidden. In the low pressure regime (less than 13.5 kbar) the impurity binding energy growths linearly with pressure, and in the high pressure regime (higher than 13.5 kbar) the binding energy growths up to a maximum and then decreases. Additionally, we have found that the applied electric and magnetic fields may favor the increase or decrease in binding energy, depending on the impurity position.  相似文献   

16.
Combined effects of magnetic and electric fields on the confined exciton in an InAs1−xPx/InP (x=0.2) quantum well wire are investigated taking into account the geometrical confinement effect. Variational formulism, within the frame work of effective mass approximation, is applied to obtain the exciton binding energy. The second order harmonic generation and the optical gain are carried out using compact density method. The strain effects are included with the confinement potential in the Hamiltonian. The energy difference of the ground and the first excited state is found in the presence of magnetic and electric fields taking into the consideration of spatial confinement effect. The result shows that the optical properties are more influenced taking into account the effects of geometrical confinement, magnetic field and electric field. It is shown that the telecommunication wavelength can be achieved with the suitable doping barrier material with the wire material and the external perturbations.  相似文献   

17.
In this paper, the effects of hydrostatic pressure, temperature and intense laser field on the linear and nonlinear optical processes in the conduction band of a square quantum well are numerically investigated in the effective mass approximation. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results are presented for typical square GaAs/AlxGa1?xAs single quantum well system. The nonlinear optical absorption and refractive index changes depending on the hydrostatic pressure and intense laser field are investigated for two different temperature values. The results show that the intense laser field, the hydrostatic pressure and the temperature have a significant effect on the optical characteristics of these structures.  相似文献   

18.
Within the framework of effective mass approximation and variational method, the electronic and impurity states in spherical quantum dots with convex bottom in magnetic field are calculated. Calculations are carried out both for on-center and off-center impurities. The impurity binding energy dependencies on radius, measure of convexity of quantum dot bottom, impurity position and magnetic field induction are obtained for the Ga1-xAlxAs/Ga1-yAlyAs system.  相似文献   

19.
用平面波展开法对GaN/AlxGa1-xN球形量子点中类氢杂质态能级随量子点半径、Al组分以及结合能随Al组分的变化规律进行了详细讨论.计算了量子点内外有效质量差异对杂质态能级和结合能的修正,结果表明对于Al组分较高的GaN/AlxGa1-xN球形量子点,电子有效质量差异对杂质能级和结合能的修正不能忽略.考虑电子有效质量差异后,进一步具体计算了杂质结合能随量子点半 关键词: 球形量子点 平面波展开法 有效质量  相似文献   

20.
The binding energy of laser dressed donor impurity is calculated under the influence of a magnetic field in a quantum well. The binding energy of the ground state of a donor is investigated, within the single band effective mass approximation, variationally for different concentrations at the well centre. The effect of laser and magnetic fields on diamagnetic susceptibility of the hydrogenic donor is reported. The Landau energy levels of electrons in the quantum well as a function of magnetic field are reported. The results show that the diamagnetic susceptibility (i) decreases drastically as intensity of the laser field increases (ii) increases with the magnetic field strength (iii) decreases as the Al-concentration decreases and (iv) a variation of increase in binding energy is observed when non-parabolicity is included and this effect is predominant for narrow wells. Our results are in good agreement with previous investigations for other heterostructures in the presence of laser intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号